메뉴 건너뛰기




Volumn 37, Issue 5, 2016, Pages 1173-1189

A new change-detection method in high-resolution remote sensing images based on a conditional random field model

Author keywords

Change detection; conditional random field (CRF); fully connected CRF (FCCRF); fuzzy C means (FCM)

Indexed keywords

FUZZY SYSTEMS; INFERENCE ENGINES; PIXELS; REMOTE SENSING;

EID: 84961221440     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1148284     Document Type: Article
Times cited : (51)

References (29)
  • 1
    • 84897791877 scopus 로고    scopus 로고
    • Comparison of Relative Radiometric Normalization Methods Using Pseudo-Invariant Features for Change Detection Studies in Rural and Urban Landscapes
    • N.Bao,, A.Lechner, A.Fletcher, A.Mellor, D.Mulligan, and Z.Bai. 2012. “Comparison of Relative Radiometric Normalization Methods Using Pseudo-Invariant Features for Change Detection Studies in Rural and Urban Landscapes.” Journal of Applied Remote Sensing 6 (063578): 1–18.
    • (2012) Journal of Applied Remote Sensing , vol.6 , pp. 1-18
    • Bao, N.1    Lechner, A.2    Fletcher, A.3    Mellor, A.4    Mulligan, D.5    Bai, Z.6
  • 2
    • 77954758347 scopus 로고    scopus 로고
    • Unsupervised Change Detection in Multispectral Remotely Sensed Imagery with Level Set Methods
    • Y.Bazi,, F.Melgani, and H.D.Al-Sharari. 2010. “Unsupervised Change Detection in Multispectral Remotely Sensed Imagery with Level Set Methods.” IEEE Transactions on Geoscience and Remote Sensing 48 (8): 3178–3187. doi:10.1109/TGRS.2010.2045506.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.8 , pp. 3178-3187
    • Bazi, Y.1    Melgani, F.2    Al-Sharari, H.D.3
  • 3
    • 67949102000 scopus 로고    scopus 로고
    • Analysis and Adaptive Estimation of the Registration Noise Distribution in Multitemporal VHR Images
    • F.Bovolo,, L.Bruzzone, and S.Marchesi. 2009. “Analysis and Adaptive Estimation of the Registration Noise Distribution in Multitemporal VHR Images.” IEEE Transactions on Geoscience and Remote Sensing 47 (8): 2658–2671. doi:10.1109/TGRS.2009.2017014.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2658-2671
    • Bovolo, F.1    Bruzzone, L.2    Marchesi, S.3
  • 4
    • 0033707763 scopus 로고    scopus 로고
    • Automatic Analysis of the Difference Image for Unsupervised Change Detection
    • L.Bruzzone,, and D.F.Prieto. 2000. “Automatic Analysis of the Difference Image for Unsupervised Change Detection.” IEEE Transactions on Geoscience and Remote Sensing 38: 1171–1182. doi:10.1109/36.843009.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.F.2
  • 5
    • 85027927548 scopus 로고    scopus 로고
    • Automatic Change Detection in High-Resolution Remote-Sensing Images by Means of Level Set Evolution and Support Vector Machine Classification
    • G.Cao,, Y.Li, Y.Liu, and Y.Shang. 2014. “Automatic Change Detection in High-Resolution Remote-Sensing Images by Means of Level Set Evolution and Support Vector Machine Classification.” International Journal of Remote Sensing 35 (16): 6255–6270. doi:10.1080/01431161.2014.951740.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.16 , pp. 6255-6270
    • Cao, G.1    Li, Y.2    Liu, Y.3    Shang, Y.4
  • 6
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised Change Detection in Satellite Images Using Principal Component Analysis And-Means Clustering [J]
    • T.Celik, 2009. “Unsupervised Change Detection in Satellite Images Using Principal Component Analysis And-Means Clustering [J].” IEEEGeoscience and Remote Sensing Letters 6 (4): 772–776. doi:10.1109/LGRS.2009.2025059.
    • (2009) IEEEGeoscience and Remote Sensing Letters , vol.6 , Issue.4 , pp. 772-776
    • Celik, T.1
  • 7
    • 79151479204 scopus 로고    scopus 로고
    • Multitemporal Image Change Detection Using Undecimated Discrete Wavelet Transform and Active Contours
    • T.Celik,, and -K.-K.Ma. 2011. “Multitemporal Image Change Detection Using Undecimated Discrete Wavelet Transform and Active Contours.” IEEE Transactions on Geoscience and Remote Sensing 49 (2): 706–716. doi:10.1109/TGRS.2010.2066979.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.2 , pp. 706-716
    • Celik, T.1    Ma, -K.-K.2
  • 8
    • 80155147984 scopus 로고    scopus 로고
    • Change Detection of Land Use and Land Cover in an Urban Region with SPOT-5 Images and Partial Lanczos Extreme Learning Machine
    • N.B.Chang,, M. Han, W. Yao, L. C. Chen, and S. Xu. 2010. “Change Detection of Land Use and Land Cover in an Urban Region with SPOT-5 Images and Partial Lanczos Extreme Learning Machine.” Journal of Applied Remote Sensing 4 (043551): 1–15.
    • (2010) Journal of Applied Remote Sensing , vol.4 , Issue.43551 , pp. 1-15
    • Chang, N.B.1
  • 10
    • 84908058606 scopus 로고    scopus 로고
    • Sparse Hierarchical Clustering for VHR Image Change Detection
    • K.Ding,, C. Huo, Y. Xu, Z. Zhong, and C. Panthors. 2015. “Sparse Hierarchical Clustering for VHR Image Change Detection.” IEEE Geoscience and Remote Sensing Letters 12 (3): 557–581.
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.3 , pp. 557-581
    • Ding, K.1
  • 11
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • G.M.Foody, 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering & Remote Sensing 70: 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 12
    • 78649892044 scopus 로고    scopus 로고
    • Fuzzy Clustering Algorithms for Unsupervised Change Detection in Remote Sensing Images
    • A.Ghosh,, N.S.Mishra, and S.Ghosh. 2011. “Fuzzy Clustering Algorithms for Unsupervised Change Detection in Remote Sensing Images.” Information Sciences 181: 699–715. doi:10.1016/j.ins.2010.10.016.
    • (2011) Information Sciences , vol.181 , pp. 699-715
    • Ghosh, A.1    Mishra, N.S.2    Ghosh, S.3
  • 13
    • 84888186703 scopus 로고    scopus 로고
    • Semi-Supervised Change Detection Using Modified Self-Organizing Feature Map Neural Network
    • S.Ghosh,, M.Roy, and A.Ghosh. 2014. “Semi-Supervised Change Detection Using Modified Self-Organizing Feature Map Neural Network.” Applied Soft Computing 15: 1–20. doi:10.1016/j.asoc.2013.09.010.
    • (2014) Applied Soft Computing , vol.15 , pp. 1-20
    • Ghosh, S.1    Roy, M.2    Ghosh, A.3
  • 14
    • 84888308186 scopus 로고    scopus 로고
    • Unsupervised Change Detection with Expectation-Maximization-Based Level Set
    • M.Hao,, W.Shi, H.Zhang, and C.Li. 2014. “Unsupervised Change Detection with Expectation-Maximization-Based Level Set.” IEEE Geoscience and Remote Sensing Letters 11 (1): 210–214. doi:10.1109/LGRS.2013.2252879.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.1 , pp. 210-214
    • Hao, M.1    Shi, W.2    Zhang, H.3    Li, C.4
  • 15
    • 84908011389 scopus 로고    scopus 로고
    • Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection
    • B.Hou,, Q.Wei, Y.Zheng, and S.Wang. 2014. “Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (8): 3297–3317. doi:10.1109/JSTARS.2014.2328344.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.8 , pp. 3297-3317
    • Hou, B.1    Wei, Q.2    Zheng, Y.3    Wang, S.4
  • 16
    • 39749188900 scopus 로고    scopus 로고
    • Use of a Dark Object Concept and Support Vector Machines to Automate Forest Cover Change Analysis
    • C.Huang,, K.Song, S.Kim, J.R.G.Townshend, P.Davis, J.G.Masek, and S.N.Goward. 2008. “Use of a Dark Object Concept and Support Vector Machines to Automate Forest Cover Change Analysis.” Remote Sensing of Environment 112: 970–985. doi:10.1016/j.rse.2007.07.023.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 970-985
    • Huang, C.1    Song, K.2    Kim, S.3    Townshend, J.R.G.4    Davis, P.5    Masek, J.G.6    Goward, S.N.7
  • 17
    • 84876726723 scopus 로고    scopus 로고
    • Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches
    • M.Hussain,, D.Chen, A.Cheng, H.Wei, and D.Stanley. 2013. “Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches.” ISPRS Journal of Photogrammetry and Remote Sensing 80: 91–106. doi:10.1016/j.isprsjprs.2013.03.006.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 18
    • 37249089673 scopus 로고    scopus 로고
    • Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation
    • J.Im,, J.R.Jensen, and J.A.Tullis. 2008. “Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation.” International Journal of Remote Sensing 29 (2): 399–423. doi:10.1080/01431160601075582.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.2 , pp. 399-423
    • Im, J.1    Jensen, J.R.2    Tullis, J.A.3
  • 19
    • 85162351107 scopus 로고    scopus 로고
    • Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials[C]
    • P.Krähenbühl,, and V.Koltun. 2011. “Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials[C].” In NIPS, Vol. 24, 1–9. La Jolla, CA: Neural Information Processing Systems Foundation, Inc.
    • (2011) NIPS , vol.24 , pp. 1-9
    • Krähenbühl, P.1    Koltun, V.2
  • 20
    • 84977954111 scopus 로고    scopus 로고
    • Discriminative Random Fields: A Discriminative Framework for Contextual Interaction inClassification
    • S.Kumar,, and M.Hebert. 2003. “Discriminative Random Fields: A Discriminative Framework for Contextual Interaction inClassification.” Robotics Institute, Paper 438.
    • (2003) Robotics Institute, Paper 438
    • Kumar, S.1    Hebert, M.2
  • 21
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    • J.Lafferty,, A.McCallum, and F.C.N.Pereira. 2001. “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.” In Proceedings 18th International Conference on Machine Learning, 282–289, Williams College, Williamstown, MA. Princeton, NJ: International Machine Learning Society.
    • (2001) Proceedings 18th International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 22
    • 0036986484 scopus 로고    scopus 로고
    • Unsupervised Change-Detection Methods for Remote-Sensing Data
    • F.Melgani,, G.Moser, and S.B.Serpico. 2002. “Unsupervised Change-Detection Methods for Remote-Sensing Data.” Optical Engineering 41 (12): 3288–3297. doi:10.1117/1.1518995.
    • (2002) Optical Engineering , vol.41 , Issue.12 , pp. 3288-3297
    • Melgani, F.1    Moser, G.2    Serpico, S.B.3
  • 23
    • 47849131596 scopus 로고    scopus 로고
    • An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images
    • M.D.Mura,, J.A.Benediktsson, F.Bovolo, and L.Bruzzone. 2008. “An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images.” IEEE Geoscience and Remote Sensing Letters 5 (3): 433–437. doi:10.1109/LGRS.2008.917726.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.3 , pp. 433-437
    • Mura, M.D.1    Benediktsson, J.A.2    Bovolo, F.3    Bruzzone, L.4
  • 24
    • 12944258552 scopus 로고    scopus 로고
    • Calibrating a Neural Network-Based Urban Change Model for Two Metropolitan Areas of the Upper Midwest of the United States
    • B.C.Pijanowski,, S.Pithadia, B.A.Shellito, and K.Alexandridis. 2005. “Calibrating a Neural Network-Based Urban Change Model for Two Metropolitan Areas of the Upper Midwest of the United States.” International Journal of Geographical Information Science 19: 197–215. doi:10.1080/13658810410001713416.
    • (2005) International Journal of Geographical Information Science , vol.19 , pp. 197-215
    • Pijanowski, B.C.1    Pithadia, S.2    Shellito, B.A.3    Alexandridis, K.4
  • 25
    • 77957306071 scopus 로고    scopus 로고
    • Change Detection in Remote Sensing Images Using Modified Polynomial Regression and Spatial Multivariate Alteration Detection
    • D.Rouhollah,, and S.Kasaei. 2009. “Change Detection in Remote Sensing Images Using Modified Polynomial Regression and Spatial Multivariate Alteration Detection.” Journal of Applied Remote Sensing 3 (033561): 1–11.
    • (2009) Journal of Applied Remote Sensing , vol.3 , Issue.33561 , pp. 1-11
    • Rouhollah, D.1    Kasaei, S.2
  • 27
    • 85027954143 scopus 로고    scopus 로고
    • A Critical Synthesis of Remotely Sensed Optical Image Change Detection Techniques
    • A.P.Tewkesbury,, A.J.Comber, N.J.Tate, A.Lamb, and P.F.Fisher. 2015. “A Critical Synthesis of Remotely Sensed Optical Image Change Detection Techniques.” Remote Sensing of Environment 160: 1–14. doi:10.1016/j.rse.2015.01.006.
    • (2015) Remote Sensing of Environment , vol.160 , pp. 1-14
    • Tewkesbury, A.P.1    Comber, A.J.2    Tate, N.J.3    Lamb, A.4    Fisher, P.F.5
  • 29
    • 79751527382 scopus 로고    scopus 로고
    • A Highly Repeatable Feature Detector: Improved Harris-Laplace
    • J.Zhang,, Q.Chen, Q.Sun, H.Sun, and D.Xia. 2011. “A Highly Repeatable Feature Detector: Improved Harris-Laplace.” Multimedia Tools and Applications 52: 175–186. doi:10.1007/s11042-010-0471-9.
    • (2011) Multimedia Tools and Applications , vol.52 , pp. 175-186
    • Zhang, J.1    Chen, Q.2    Sun, Q.3    Sun, H.4    Xia, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.