-
1
-
-
84876279278
-
Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3sXislymu70%3D
-
Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157. doi:10.1002/adma.201300071
-
(2013)
Adv Mater
, vol.25
, Issue.15
, pp. 2152-2157
-
-
Zhou, X.1
Wan, L.-J.2
Guo, Y.-G.3
-
2
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
COI: 1:CAS:528:DC%2BD3MXovFGitrY%3D
-
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
3
-
-
84874069759
-
Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3sXhsFKhtr8%3D
-
Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133. doi:10.1002/aenm.201200346
-
(2013)
Adv Energy Mater
, vol.3
, Issue.1
, pp. 128-133
-
-
Xu, Y.1
Zhu, Y.2
Liu, Y.3
Wang, C.4
-
4
-
-
84873926707
-
Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries
-
Pan A, Wu HB, Yu L, Lou XW (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem 125(8):2282–2286. doi:10.1002/ange.201209535
-
(2013)
Angew Chem
, vol.125
, Issue.8
, pp. 2282-2286
-
-
Pan, A.1
Wu, H.B.2
Yu, L.3
Lou, X.W.4
-
5
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
COI: 1:CAS:528:DC%2BC3sXhtFOisrzJ
-
Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ Environ Sci 6(8):2338–2360. doi:10.1039/c3ee40847g
-
(2013)
Energ Environ Sci
, vol.6
, Issue.8
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.-S.2
Chen, L.3
-
6
-
-
80052216133
-
Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies
-
COI: 1:CAS:528:DC%2BC3MXht1Cqs7nK
-
Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energ Environ Sci 4(9):3342–3345. doi:10.1039/c1ee01744f
-
(2011)
Energ Environ Sci
, vol.4
, Issue.9
, pp. 3342-3345
-
-
Wenzel, S.1
Hara, T.2
Janek, J.3
Adelhelm, P.4
-
7
-
-
84878717290
-
Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
-
Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y-S, Li H, Armand M, Ikuhara Y, Chen L, Huang X (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870. doi:10.1038/ncomms2878
-
(2013)
Nat Commun
, vol.4
, pp. 1870
-
-
Sun, Y.1
Zhao, L.2
Pan, H.3
Lu, X.4
Gu, L.5
Hu, Y.-S.6
Li, H.7
Armand, M.8
Ikuhara, Y.9
Chen, L.10
Huang, X.11
-
8
-
-
76249125142
-
On the way to rechargeable mg batteries: the challenge of new cathode materials
-
COI: 1:CAS:528:DC%2BD1MXhtVelurjP
-
Levi E, Gofer Y, Aurbach D (2010) On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem Mater 22(3):860–868. doi:10.1021/cm9016497
-
(2010)
Chem Mater
, vol.22
, Issue.3
, pp. 860-868
-
-
Levi, E.1
Gofer, Y.2
Aurbach, D.3
-
9
-
-
84931955407
-
Novel sodium bismuth sulfide nanostructures: a promising anode materials for sodium-ion batteries with high capacity
-
Fei H, Feng Z, Liu X (2014) Novel sodium bismuth sulfide nanostructures: a promising anode materials for sodium-ion batteries with high capacity. Ionics 21(7):1967–1972. doi:10.1007/s11581-014-1356-0
-
(2014)
Ionics
, vol.21
, Issue.7
, pp. 1967-1972
-
-
Fei, H.1
Feng, Z.2
Liu, X.3
-
10
-
-
84880166567
-
Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir
-
COI: 1:CAS:528:DC%2BC3sXosVegtr0%3D
-
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100. doi:10.1021/nl400998t
-
(2013)
Nano Lett
, vol.13
, Issue.7
, pp. 3093-3100
-
-
Zhu, H.1
Jia, Z.2
Chen, Y.3
Weadock, N.4
Wan, J.5
Vaaland, O.6
Han, X.7
Li, T.8
Hu, L.9
-
11
-
-
84866687358
-
Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries
-
COI: 1:CAS:528:DC%2BC38XhsFSltrzL
-
Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun X-G, Dai S (2013) Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 222:461–466. doi:10.1016/j.jpowsour.2012.09.019
-
(2013)
J Power Sources
, vol.222
, pp. 461-466
-
-
Bi, Z.1
Paranthaman, M.P.2
Menchhofer, P.A.3
Dehoff, R.R.4
Bridges, C.A.5
Chi, M.6
Guo, B.7
Sun, X.-G.8
Dai, S.9
-
12
-
-
84873301069
-
A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4
-
COI: 1:CAS:528:DC%2BC3sXhvVChu70%3D
-
Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. Phys Chem Chem Phys 15(8):2945–2953. doi:10.1039/c2cp44572g
-
(2013)
Phys Chem Chem Phys
, vol.15
, Issue.8
, pp. 2945-2953
-
-
Hariharan, S.1
Saravanan, K.2
Ramar, V.3
Balaya, P.4
-
13
-
-
84893860567
-
Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
COI: 1:CAS:528:DC%2BC2cXhtVOksbs%3D
-
Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Edit 53(8):2152–2156. doi:10.1002/anie.201308354
-
(2014)
Angew Chem Int Edit
, vol.53
, Issue.8
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
14
-
-
72249090644
-
Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α‐Fe2O3 for rechargeable batteries
-
COI: 1:CAS:528:DC%2BD1MXhsFagurzP
-
Komaba S, Mikumo T, Yabuuchi N, Ogata A, Yoshida H, Yamada Y (2010) Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α‐Fe2O3 for rechargeable batteries. J Electrochem Soc 157(1):A60–A65. doi:10.1149/1.3254160
-
(2010)
J Electrochem Soc
, vol.157
, Issue.1
, pp. A60-A65
-
-
Komaba, S.1
Mikumo, T.2
Yabuuchi, N.3
Ogata, A.4
Yoshida, H.5
Yamada, Y.6
-
15
-
-
0242367290
-
Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries
-
Alcántara R, Lavela P, Ortiz GF, Tirado JL, Menéndez R, Santamaría R, Jiménez-Mateos JM (2003) Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon 41(15):3003–3013. doi:10.1016/S0008-6223(03)00432-9
-
(2003)
Carbon
, vol.41
, Issue.15
, pp. 3003-3013
-
-
Alcántara, R.1
Lavela, P.2
Ortiz, G.F.3
Tirado, J.L.4
Menéndez, R.5
Santamaría, R.6
Jiménez-Mateos, J.M.7
-
16
-
-
84870320062
-
High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte
-
COI: 1:CAS:528:DC%2BC3sXlvVemtg%3D%3D
-
Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. doi:10.1016/j.elecom.2012.10.038
-
(2013)
Electrochem Commun
, vol.27
, pp. 85-88
-
-
Ponrouch, A.1
Goñi, A.R.2
Palacín, M.R.3
-
17
-
-
0009800208
-
The mechanisms of lithium and sodium insertion in carbon materials
-
COI: 1:CAS:528:DC%2BD3MXlvFKntr0%3D
-
Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811. doi:10.1149/1.1379565
-
(2001)
J Electrochem Soc
, vol.148
, Issue.8
, pp. A803-A811
-
-
Stevens, D.A.1
Dahn, J.R.2
-
18
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries
-
COI: 1:CAS:528:DC%2BC3MXhtVWjurfM
-
Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv Funct Mater 21(20):3859–3867. doi:10.1002/adfm.201100854
-
(2011)
Adv Funct Mater
, vol.21
, Issue.20
, pp. 3859-3867
-
-
Komaba, S.1
Murata, W.2
Ishikawa, T.3
Yabuuchi, N.4
Ozeki, T.5
Nakayama, T.6
Ogata, A.7
Gotoh, K.8
Fujiwara, K.9
-
19
-
-
84862527593
-
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
-
COI: 1:CAS:528:DC%2BC38Xoslaksrc%3D
-
Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072. doi:10.1039/c2cc32730a
-
(2012)
Chem Commun
, vol.48
, Issue.56
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
Wu, L.3
Cao, Y.4
Ai, X.5
Yang, H.6
-
20
-
-
84869868027
-
Tin and graphite based nanocomposites: potential anode for sodium ion batteries
-
COI: 1:CAS:528:DC%2BC38XhslKqur%2FF
-
Datta MK, Epur R, Saha P, Kadakia K, Park SK, Kumta PN (2013) Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J Power Sources 225:316–322. doi:10.1016/j.jpowsour.2012.10.014
-
(2013)
J Power Sources
, vol.225
, pp. 316-322
-
-
Datta, M.K.1
Epur, R.2
Saha, P.3
Kadakia, K.4
Park, S.K.5
Kumta, P.N.6
-
21
-
-
84924959406
-
3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries
-
COI: 1:CAS:528:DC%2BC2MXktlGqs7s%3D
-
Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16. doi:10.1016/j.electacta.2015.03.081
-
(2015)
Electrochim Acta
, vol.166
, pp. 12-16
-
-
Liu, X.1
Chen, T.2
Chu, H.3
Niu, L.4
Sun, Z.5
Pan, L.6
Sun, C.Q.7
-
22
-
-
84918821766
-
2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance
-
COI: 1:CAS:528:DC%2BC2cXitFKlur%2FL
-
Qin W, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61. doi:10.1016/j.electacta.2014.11.034
-
(2015)
Electrochim Acta
, vol.153
, pp. 55-61
-
-
Qin, W.1
Chen, T.2
Pan, L.3
Niu, L.4
Hu, B.5
Li, D.6
Li, J.7
Sun, Z.8
-
23
-
-
84908329873
-
A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries
-
COI: 1:CAS:528:DC%2BC2cXhslOit77J
-
Yan Z, Liu L, Shu H, Yang X, Wang H, Tan J, Zhou Q, Huang Z, Wang X (2015) A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J Power Sources 274:8–14. doi:10.1016/j.jpowsour.2014.10.045
-
(2015)
J Power Sources
, vol.274
, pp. 8-14
-
-
Yan, Z.1
Liu, L.2
Shu, H.3
Yang, X.4
Wang, H.5
Tan, J.6
Zhou, Q.7
Huang, Z.8
Wang, X.9
-
24
-
-
84882600351
-
New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems
-
COI: 1:CAS:528:DC%2BC3sXhtFOisr%2FO
-
Shirpour M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energ Environ Sci 6(8):2538–2547. doi:10.1039/c3ee41037d
-
(2013)
Energ Environ Sci
, vol.6
, Issue.8
, pp. 2538-2547
-
-
Shirpour, M.1
Cabana, J.2
Doeff, M.3
-
25
-
-
84921629547
-
2 nanoparticles as anode for sodium-ion batteries
-
COI: 1:CAS:528:DC%2BC2MXhtlOnurg%3D
-
Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. ElectrochimActa 157:142–148. doi:10.1016/j.electacta.2015.01.086
-
(2015)
ElectrochimActa
, vol.157
, pp. 142-148
-
-
Ge, Y.1
Jiang, H.2
Zhu, J.3
Lu, Y.4
Chen, C.5
Hu, Y.6
Qiu, Y.7
Zhang, X.8
-
26
-
-
80054887056
-
2 nanotube anode for rechargeable sodium ion batteries
-
COI: 1:CAS:528:DC%2BC3MXht1ChtLbP
-
Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2(20):2560–2565. doi:10.1021/jz2012066
-
(2011)
J Phys Chem Lett
, vol.2
, Issue.20
, pp. 2560-2565
-
-
Xiong, H.1
Slater, M.D.2
Balasubramanian, M.3
Johnson, C.S.4
Rajh, T.5
-
27
-
-
84921323854
-
4 for sodium ion batteries
-
Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381. doi:10.1016/j.jpowsour.2014.11.047
-
(2015)
J Power Sources
, vol.278
, pp. 375-381
-
-
Ni'mah, Y.L.1
Cheng, M.-Y.2
Cheng, J.H.3
Rick, J.4
Hwang, B.-J.5
-
28
-
-
84923924339
-
2 nanorods applied into sodium and lithium ion batteries
-
Yang Y, Ji X, Jing M, Hou H, Zhu Y, Fang L, Yang X, Chen Q, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 10:5648–5655
-
(2015)
J Mater Chem A
, vol.10
, pp. 5648-5655
-
-
Yang, Y.1
Ji, X.2
Jing, M.3
Hou, H.4
Zhu, Y.5
Fang, L.6
Yang, X.7
Chen, Q.8
Banks, C.E.9
-
29
-
-
84899462779
-
Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials
-
COI: 1:CAS:528:DC%2BC2cXksF2quro%3D
-
Shirpour M, Cabana J, Doeff M (2014) Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater 26(8):2502–2512
-
(2014)
Chem Mater
, vol.26
, Issue.8
, pp. 2502-2512
-
-
Shirpour, M.1
Cabana, J.2
Doeff, M.3
-
30
-
-
84894216143
-
Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries
-
COI: 1:CAS:528:DC%2BC2cXktlGhsA%3D%3D
-
Kim K-T, Ali G, Chung KY, Yoon CS, Yashiro H, Sun Y-K, Lu J, Amine K, Myung S-T (2014) Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett 14(2):416–422
-
(2014)
Nano Lett
, vol.14
, Issue.2
, pp. 416-422
-
-
Kim, K.-T.1
Ali, G.2
Chung, K.Y.3
Yoon, C.S.4
Yashiro, H.5
Sun, Y.-K.6
Lu, J.7
Amine, K.8
Myung, S.-T.9
-
31
-
-
84880556085
-
2 (B) nanotubes for sodium ion batteries
-
COI: 1:CAS:528:DC%2BC3sXhtFSitbjI
-
Huang J, Yuan D, Zhang H, Cao Y, Li G, Yang H, Gao X (2013) Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Adv 3(31):12593–12597
-
(2013)
RSC Adv
, vol.3
, Issue.31
, pp. 12593-12597
-
-
Huang, J.1
Yuan, D.2
Zhang, H.3
Cao, Y.4
Li, G.5
Yang, H.6
Gao, X.7
-
32
-
-
84892558338
-
2: a new negative electrode material for sodium-ion batteries
-
COI: 1:CAS:528:DC%2BC2cXosVOntA%3D%3D
-
Perez-Flores JC, Baehtz C, Kuhn A, Garcia-Alvarado F (2014) Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries. J Mater Chem A 2(6):1825–1833. doi:10.1039/c3ta13394j
-
(2014)
J Mater Chem A
, vol.2
, Issue.6
, pp. 1825-1833
-
-
Perez-Flores, J.C.1
Baehtz, C.2
Kuhn, A.3
Garcia-Alvarado, F.4
-
33
-
-
84917670581
-
2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries
-
COI: 1:CAS:528:DC%2BC2cXhvFaqtbvI
-
Lee J, Chen Y-M, Zhu Y, Vogt BD (2014) Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl Mater Inter 6(23):21011–21018
-
(2014)
ACS Appl Mater Inter
, vol.6
, Issue.23
, pp. 21011-21018
-
-
Lee, J.1
Chen, Y.-M.2
Zhu, Y.3
Vogt, B.D.4
-
34
-
-
84904977779
-
2 anode for sodium-ion battery
-
COI: 1:CAS:528:DC%2BC2cXhtVahtL7L
-
Oh S-M, Hwang J-Y, Yoon CS, Lu J, Amine K, Belharouak I, Sun Y-K (2014) High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl Mater Inter 6(14):11295–11301
-
(2014)
ACS Appl Mater Inter
, vol.6
, Issue.14
, pp. 11295-11301
-
-
Oh, S.-M.1
Hwang, J.-Y.2
Yoon, C.S.3
Lu, J.4
Amine, K.5
Belharouak, I.6
Sun, Y.-K.7
-
35
-
-
84911385350
-
2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system
-
COI: 1:CAS:528:DC%2BC2cXhtFynt7nI
-
Ohata Y, Yun J, Miyamae R, Kim T, Kim J, Seo M-H, Kitajo A, Miyawaki J, Okada S, Yoon S-H (2014) TiO2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system. Appl Therm Eng 72(2):309–314
-
(2014)
Appl Therm Eng
, vol.72
, Issue.2
, pp. 309-314
-
-
Ohata, Y.1
Yun, J.2
Miyamae, R.3
Kim, T.4
Kim, J.5
Seo, M.-H.6
Kitajo, A.7
Miyawaki, J.8
Okada, S.9
Yoon, S.-H.10
-
36
-
-
84896482880
-
2 nanoparticles as an anode material for sodium ion batteries
-
COI: 1:CAS:528:DC%2BC2cXks1Slt7c%3D
-
Cha HA, Jeong HM, Kang JK (2014) Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J Mate Chem A 2(15):5182–5186
-
(2014)
J Mate Chem A
, vol.2
, Issue.15
, pp. 5182-5186
-
-
Cha, H.A.1
Jeong, H.M.2
Kang, J.K.3
-
37
-
-
84908553506
-
4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode
-
COI: 1:CAS:528:DC%2BC2cXhs1Glsr%2FE
-
Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884
-
(2015)
J Power Sources
, vol.273
, pp. 878-884
-
-
Liu, Y.1
Cheng, Z.2
Sun, H.3
Arandiyan, H.4
Li, J.5
Ahmad, M.6
-
38
-
-
84893965506
-
2—reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue
-
COI: 1:CAS:528:DC%2BC2cXitVymsbw%3D
-
Li J, Liu X, Pan L, Qin W, Chen T, Sun Z (2014) MoS2—reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv 4(19):9647–9651
-
(2014)
RSC Adv
, vol.4
, Issue.19
, pp. 9647-9651
-
-
Li, J.1
Liu, X.2
Pan, L.3
Qin, W.4
Chen, T.5
Sun, Z.6
-
39
-
-
77950033369
-
2 composite films for supercapacitors
-
COI: 1:CAS:528:DC%2BC3cXkt1Ogt7c%3D
-
Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55(13):4170–4173. doi:10.1016/j.electacta.2010.02.095
-
(2010)
Electrochim Acta
, vol.55
, Issue.13
, pp. 4170-4173
-
-
Lu, T.1
Zhang, Y.2
Li, H.3
Pan, L.4
Li, Y.5
Sun, Z.6
-
40
-
-
78650008151
-
2 films for CdS quantum dot-sensitized solar cells
-
COI: 1:CAS:528:DC%2BC3cXhsVCmsLbN
-
Zhu G, Xu T, Lv T, Pan L, Zhao Q, Sun Z (2011) Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J ElectroanalChem 650(2):248–251
-
(2011)
J ElectroanalChem
, vol.650
, Issue.2
, pp. 248-251
-
-
Zhu, G.1
Xu, T.2
Lv, T.3
Pan, L.4
Zhao, Q.5
Sun, Z.6
-
41
-
-
80053952797
-
A green and fast way for reduction of graphene oxide in acidic aqueous solution via microwave assistance
-
COI: 1:CAS:528:DC%2BC3MXht1ygsr3L
-
Lu T, Pan L, Nie C, Zhao Z, Sun Z (2011) A green and fast way for reduction of graphene oxide in acidic aqueous solution via microwave assistance. Phys Status Solidi (a) 208(10):2325–2327
-
(2011)
Phys Status Solidi (a)
, vol.208
, Issue.10
, pp. 2325-2327
-
-
Lu, T.1
Pan, L.2
Nie, C.3
Zhao, Z.4
Sun, Z.5
-
42
-
-
84908553506
-
4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode
-
COI: 1:CAS:528:DC%2BC2cXhs1Glsr%2FE
-
Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. JPower Sources 273:878–884
-
(2015)
JPower Sources
, vol.273
, pp. 878-884
-
-
Liu, Y.1
Cheng, Z.2
Sun, H.3
Arandiyan, H.4
Li, J.5
Ahmad, M.6
-
43
-
-
84883863821
-
2: a new anode material for rechargeable sodium ion batteries
-
COI: 1:CAS:528:DC%2BC3sXhsVehtrzJ
-
Xu Y, Lotfabad EM, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49(79):8973–8975
-
(2013)
Chem Commun
, vol.49
, Issue.79
, pp. 8973-8975
-
-
Xu, Y.1
Lotfabad, E.M.2
Wang, H.3
Farbod, B.4
Xu, Z.5
Kohandehghan, A.6
Mitlin, D.7
-
44
-
-
84890810431
-
2 nanoparticles for high power sodium-ion anodes
-
COI: 1:CAS:528:DC%2BC2cXpsF2m
-
Wu L, Buchholz D, Bresser D, Chagas LG, Passerini S (2014) Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources 251:379–385
-
(2014)
J Power Sources
, vol.251
, pp. 379-385
-
-
Wu, L.1
Buchholz, D.2
Bresser, D.3
Chagas, L.G.4
Passerini, S.5
-
45
-
-
84928894155
-
2 nanotubes as superior anode materials for sodium ion batteries
-
COI: 1:CAS:528:DC%2BC2MXmt1WmtLs%3D
-
Yan D, Yu C, Bai Y, Zhang W, Chen T, Hu B, Sun Z, Pan L (2015) Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem Commun 51(39):8261–8264
-
(2015)
Chem Commun
, vol.51
, Issue.39
, pp. 8261-8264
-
-
Yan, D.1
Yu, C.2
Bai, Y.3
Zhang, W.4
Chen, T.5
Hu, B.6
Sun, Z.7
Pan, L.8
|