메뉴 건너뛰기




Volumn 9, Issue 8, 2016, Pages 3642-3650

Spatio-Temporal Clustering and Active Learning for Change Classification in Satellite Image Time Series

Author keywords

Image classification; machine learning; satellite time series analysis; spatio temporal clustering

Indexed keywords

ALGORITHMS; ALUMINUM; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; DECISION TREES; HEURISTIC ALGORITHMS; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; LEARNING SYSTEMS; REMOTE SENSING; SUPERVISED LEARNING; TIME SERIES; TIME SERIES ANALYSIS;

EID: 84960540449     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2525940     Document Type: Article
Times cited : (6)

References (41)
  • 2
    • 85027954143 scopus 로고    scopus 로고
    • A critical synthesis of remotely sensed optical image change detection techniques
    • A. P. Tewkesbury, A. J. Comber, N. J. Tate, A. Lamb, and P. F. Fisher, "A critical synthesis of remotely sensed optical image change detection techniques," Remote Sens. Environ., vol. 160, pp. 1-14, 2015.
    • (2015) Remote Sens. Environ. , vol.160 , pp. 1-14
    • Tewkesbury, A.P.1    Comber, A.J.2    Tate, N.J.3    Lamb, A.4    Fisher, P.F.5
  • 3
    • 84921314842 scopus 로고    scopus 로고
    • Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction
    • L. Yan and D. Roy, "Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction," Remote Sens. Environ., vol. 158, pp. 478-491, 2015.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 478-491
    • Yan, L.1    Roy, D.2
  • 4
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar.
    • M. Crawford, D. Tuia, and H. Yang, "Active learning: Any value for classification of remotely sensed data?," Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.1    Tuia, D.2    Yang, H.3
  • 5
    • 67651183638 scopus 로고    scopus 로고
    • Active learning methods for remote sensing image classification
    • Jul.
    • D. Tuia, F. Ratle, F. Pacifici, M. Kanevski, and W. Emery, "Active learning methods for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2218-2232, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2218-2232
    • Tuia, D.1    Ratle, F.2    Pacifici, F.3    Kanevski, M.4    Emery, W.5
  • 6
    • 84898598578 scopus 로고    scopus 로고
    • Active learning in the spatial domain for remote sensing image classification
    • May
    • A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, "Active learning in the spatial domain for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2492-2507, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2492-2507
    • Stumpf, A.1    Lachiche, N.2    Malet, J.-P.3    Kerle, N.4    Puissant, A.5
  • 8
    • 84899822289 scopus 로고    scopus 로고
    • A neural approach under active learning mode for change detection in remotely sensed images
    • Apr.
    • M. Roy, S. Ghosh, and A. Ghosh, "A neural approach under active learning mode for change detection in remotely sensed images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1200-1206, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1200-1206
    • Roy, M.1    Ghosh, S.2    Ghosh, A.3
  • 9
    • 84870901798 scopus 로고    scopus 로고
    • Interactive domain adaptation for the classification of remote sensing images using active learning
    • Jul.
    • C. Persello, "Interactive domain adaptation for the classification of remote sensing images using active learning," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 736-740, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 736-740
    • Persello, C.1
  • 10
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 11
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • Sep.
    • D. Tuia, E. Pasolli, and W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, no. 9, pp. 2232-2242, Sep. 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 12
    • 78049381893 scopus 로고    scopus 로고
    • Analysing satellite image time series by means of pattern mining
    • C. Fyfe, P. Tino, D. Charles, C. Garcia-Osorio, and H. Yin, Eds. New York, NY, USA: Springer
    • F. Petitjean, P. Gançarski, F. Masseglia, and G. Forestier, "Analysing satellite image time series by means of pattern mining," in Intelligent Data Engineering and Automated Learning - IDEAL, C. Fyfe, P. Tino, D. Charles, C. Garcia-Osorio, and H. Yin, Eds. New York, NY, USA: Springer, 2010, vol. 6283, pp. 45-52.
    • (2010) Intelligent Data Engineering and Automated Learning - IDEAL , vol.6283 , pp. 45-52
    • Petitjean, F.1    Gançarski, P.2    Masseglia, F.3    Forestier, G.4
  • 13
    • 84894236013 scopus 로고    scopus 로고
    • A data mining approach to discover collections of homogeneous regions in satellite image time series
    • Jul.
    • P.-N. Mougel and N. Selmaoui-Folcher, "A data mining approach to discover collections of homogeneous regions in satellite image time series," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2013, pp. 4360-4363.
    • (2013) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 4360-4363
    • Mougel, P.-N.1    Selmaoui-Folcher, N.2
  • 14
    • 79953230813 scopus 로고    scopus 로고
    • Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns
    • Apr.
    • A. Julea et al., "Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 4, pp. 1417-1430, Apr. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.4 , pp. 1417-1430
    • Julea, A.1
  • 15
    • 84871757330 scopus 로고    scopus 로고
    • A new time series mining approach applied to multitemporal remote sensing imagery
    • Jan.
    • L. Romani et al., "A new time series mining approach applied to multitemporal remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 140-150, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 140-150
    • Romani, L.1
  • 16
    • 84902165425 scopus 로고    scopus 로고
    • Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery
    • Mar.
    • C. J. Xue, Q. Dong, and W. X. Ma, "Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery," IOP Conf. Ser. Earth Environ. Sci., vol. 17, no. 1, p. 012109, Mar. 2014.
    • (2014) IOP Conf. Ser. Earth Environ. Sci. , vol.17 , Issue.1 , pp. 012109
    • Xue, C.J.1    Dong, Q.2    Ma, W.X.3
  • 17
    • 84911418485 scopus 로고    scopus 로고
    • Exploring high repetitivity remote sensing time series for mapping and monitoring natural habitats - A new approach combining OBIA and k-partite graphs
    • Jul.
    • F. Güttler et al., "Exploring high repetitivity remote sensing time series for mapping and monitoring natural habitats - A new approach combining OBIA and k-partite graphs," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2014, pp. 3930-3933.
    • (2014) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 3930-3933
    • Güttler, F.1
  • 18
    • 84873118405 scopus 로고    scopus 로고
    • Pixel and region based temporal classification fusion for HR satellite image time series
    • Jul.
    • S. Rejichi and F. Chaabane, "Pixel and region based temporal classification fusion for HR satellite image time series," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2012, pp. 435-438.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 435-438
    • Rejichi, S.1    Chaabane, F.2
  • 19
    • 84873136944 scopus 로고    scopus 로고
    • Object Based Image Analysis (OBIA) and Data Mining (DM) in Landsat time series for mapping soybean in intensive agricultural regions
    • Jul.
    • A. Formaggio, M. Vieira, and C. Rennó, "Object Based Image Analysis (OBIA) and Data Mining (DM) in Landsat time series for mapping soybean in intensive agricultural regions," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2012, pp. 2257-2260.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 2257-2260
    • Formaggio, A.1    Vieira, M.2    Rennó, C.3
  • 20
    • 84861335868 scopus 로고    scopus 로고
    • Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas
    • Aug.
    • M. A. Vieira, A. R. Formaggio, C. D. Rennó, C. Atzberger, D. A. Aguiar, and M. P. Mello, "Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas," Remote Sens. Environ., vol. 123, pp. 553-562, Aug. 2012.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 553-562
    • Vieira, M.A.1    Formaggio, A.R.2    Rennó, C.D.3    Atzberger, C.4    Aguiar, D.A.5    Mello, M.P.6
  • 21
    • 84864067444 scopus 로고    scopus 로고
    • Spatio-temporal reasoning for the classification of satellite image time series
    • Oct.
    • F. Petitjean, C. Kurtz, N. Passat, and P. Gançarski, "Spatio-temporal reasoning for the classification of satellite image time series," Pattern Recognit. Lett., vol. 33, no. 13, pp. 1805-1815, Oct. 2012.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.13 , pp. 1805-1815
    • Petitjean, F.1    Kurtz, C.2    Passat, N.3    Gançarski, P.4
  • 24
    • 84864276740 scopus 로고    scopus 로고
    • Satellite image time series analysis under time warping
    • Aug.
    • F. Petitjean, J. Inglada, and P. Gançarski, "Satellite image time series analysis under time warping," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3081-3095, Aug. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.8 , pp. 3081-3095
    • Petitjean, F.1    Inglada, J.2    Gançarski, P.3
  • 26
    • 21844432939 scopus 로고    scopus 로고
    • Active learning to recognize multiple types of plankton
    • T. Luo et al., "Active learning to recognize multiple types of plankton," J. Mach. Learn. Res., vol. 6, no. 4, pp. 1-613, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , Issue.4 , pp. 1-613
    • Luo, T.1
  • 27
    • 0002872223 scopus 로고
    • Monitoring vegetation systems in the great plains with ERTS
    • compiled and edited by Stanley C. Freden, Enrico P. Mercanti, and Margaret A. Becker, NASA, Washington, D.C., USA 1994
    • J. Rouse Jr., R. Haas, J. Schell, and D. Deering, "Monitoring vegetation systems in the great plains with ERTS," Third Earth Resources Technology Satellite-1 Symposium-Volume I: Technical Presentations. NASA SP-351, compiled and edited by Stanley C. Freden, Enrico P. Mercanti, and Margaret A. Becker, 1994 p., NASA, Washington, D.C., USA, p. 309, 1974.
    • (1974) Third Earth Resources Technology Satellite-1 Symposium-Volume I: Technical Presentations. NASA SP-351 , pp. 309
    • Rouse, J.1    Haas, R.2    Schell, J.3    Deering, D.4
  • 29
    • 33745615125 scopus 로고    scopus 로고
    • Object-based vegetation classification with high resolution remote sensing imagery
    • P. G. Qian Yu, "Object-based vegetation classification with high resolution remote sensing imagery," Photogramm. Eng. Remote Sens., vol. 72, no. 7, pp. 799-811, 2006.
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , Issue.7 , pp. 799-811
    • Qian Yu, P.G.1
  • 30
    • 84975048818 scopus 로고    scopus 로고
    • An object-oriented approach for agrivultural and classification using rapideye imagery
    • H. Sang, L. Zhai, J. Zhang, and F. An, "An object-oriented approach for agrivultural and classification using rapideye imagery," ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XL-7/W4, pp. 145-148, 2015.
    • (2015) ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. , vol.XL-7 , Issue.W4 , pp. 145-148
    • Sang, H.1    Zhai, L.2    Zhang, J.3    An, F.4
  • 31
    • 84876214728 scopus 로고    scopus 로고
    • Potential of texture-based classification in urban landscapes using multispectral aerial photos
    • P. Mhangara and J. Odindi, "Potential of texture-based classification in urban landscapes using multispectral aerial photos," S. Afr. J. Sci., vol. 109, no. 3/4, pp. 1-8, 2013.
    • (2013) S. Afr. J. Sci. , vol.109 , Issue.3-4 , pp. 1-8
    • Mhangara, P.1    Odindi, J.2
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 33
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by Committee algorithm
    • Aug.
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by Committee algorithm," Mach. Learn., vol. 28, no. 2-3, pp. 133-168, Aug. 1997.
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 35
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "Libsvm: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 36
    • 33748126301 scopus 로고    scopus 로고
    • Confidence-based active learning
    • Aug.
    • M. Li and I. Sethi, "Confidence-based active learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1251-1261, Aug. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.8 , pp. 1251-1261
    • Li, M.1    Sethi, I.2
  • 37
    • 78049497235 scopus 로고    scopus 로고
    • Mahalanobis distance
    • Jun.
    • G. J. McLachlan, "Mahalanobis distance," Resonance, vol. 4, no. 6, pp. 20-26, Jun. 1999.
    • (1999) Resonance , vol.4 , Issue.6 , pp. 20-26
    • McLachlan, G.J.1
  • 38
    • 84984953546 scopus 로고    scopus 로고
    • [Online]
    • CNES Kalideos Littoral [Online]. Available: http://kalideos.cnes.fr/spip. php?article42.CNES, 2015.
    • (2015) CNES Kalideos Littoral
  • 40
    • 84910104155 scopus 로고    scopus 로고
    • Highly comparative feature-based timeseries classification
    • Dec.
    • B. D. Fulcher and N. S. Jones, "Highly comparative feature-based timeseries classification," IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 3026-3037, Dec. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.12 , pp. 3026-3037
    • Fulcher, B.D.1    Jones, N.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.