-
1
-
-
67149129014
-
-
Cambridge, Mass., London: MIT Press
-
Quiñonero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND. Dataset shift in machine learning. Neural information processing series. Cambridge, Mass., London: MIT Press; 2009.
-
(2009)
Dataset Shift in Machine Learning. Neural Information Processing Series
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
2
-
-
78149318752
-
Adapting visual category models to new domains
-
Berlin, Heidelberg: Springer-Verlag
-
Saenko K, Kulis B, Fritz M, Darrell T. Adapting visual category models to new domains. In: Proc. ECCV. Berlin, Heidelberg: Springer-Verlag; 2010. p. 213-226.
-
(2010)
Proc. ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
3
-
-
57149140986
-
Learning to recognize activities from the wrong view point
-
Berlin, Heidelberg: Springer-Verlag
-
Farhadi A, Tabrizi MK. Learning to Recognize Activities from the Wrong View Point. In: Proc. ECCV. Berlin, Heidelberg: Springer-Verlag; 2008. p. 154-166.
-
(2008)
Proc. ECCV
, pp. 154-166
-
-
Farhadi, A.1
Tabrizi, M.K.2
-
4
-
-
84865579385
-
Visual event recognition in videos by learning from web data
-
22201057
-
Duan L, Xu D, Tsang IW, Luo J. Visual Event Recognition in Videos by Learning from Web Data. IEEE Trans Pattern Anal Mach Intell. 2012;34(9):1667-1680. doi: 10.1109/TPAMI.2011.265 PMID: 22201057
-
(2012)
IEEE Trans Pattern Anal Mach Intell.
, vol.34
, Issue.9
, pp. 1667-1680
-
-
Duan, L.1
Xu, D.2
Tsang, I.W.3
Luo, J.4
-
5
-
-
80052908300
-
Unbiased look at dataset bias
-
Colorado Springs, CO
-
Torralba A, Efros AA. Unbiased look at dataset bias. In: Proc. CVPR. Colorado Springs, CO; 2011. p. 1521-1528.
-
(2011)
Proc. CVPR
, pp. 1521-1528
-
-
Torralba, A.1
Efros, A.A.2
-
7
-
-
85032751052
-
Visual domain adaptation: A survey of recent advances
-
May
-
Patel VM, Gopalan R, Li R, Chellappa R. Visual Domain Adaptation: A survey of recent advances. IEEE Signal Proc Mag. 2015 May; 32(3):53-69. doi: 10.1109/MSP.2014.2347059
-
(2015)
IEEE Signal Proc Mag.
, vol.32
, Issue.3
, pp. 53-69
-
-
Patel, V.M.1
Gopalan, R.2
Li, R.3
Chellappa, R.4
-
8
-
-
84866648988
-
Generalized multiview analysis: A discriminative latent space
-
Providence, RH
-
Jacobs DW, Daume H, Kumar A, Sharma A. Generalized Multiview Analysis: A discriminative latent space. In: Proc. CVPR. Providence, RH; 2012. p. 2160-2167.
-
(2012)
Proc. CVPR
, pp. 2160-2167
-
-
Jacobs, D.W.1
Daume, H.2
Kumar, A.3
Sharma, A.4
-
9
-
-
0034304404
-
Kernel and nonlinear canonical correlation analysis
-
Lai PL, Fyfe C. Kernel and Nonlinear Canonical Correlation Analysis. In: Int. J. Neural Sys.; 2000. p. 365-377. doi: 10.1142/S012906570000034X
-
(2000)
Int. J. Neural Sys.
, pp. 365-377
-
-
Lai, P.L.1
Fyfe, C.2
-
10
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
21095864
-
Pan SJ, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans Neural Networks. 2011;22:199-210. doi: 10.1109/TNN.2010.2091281 PMID: 21095864
-
(2011)
IEEE Trans Neural Networks.
, vol.22
, pp. 199-210
-
-
Pan, S.J.1
Yang, Q.2
-
11
-
-
84911361339
-
Domain adaptation on the statistical manifold
-
Columbus, OH
-
Baktashmotlagh M, Harandi MT, Lovell BC, Salzmann M. Domain adaptation on the statistical manifold. In: Proc. CVPR. Columbus, OH; 2014. p. 2481-2488.
-
(2014)
Proc. CVPR
, pp. 2481-2488
-
-
Baktashmotlagh, M.1
Harandi, M.T.2
Lovell, B.C.3
Salzmann, M.4
-
12
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
Barcelona, Spain
-
Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach. In: Proc. ICCV. Barcelona, Spain; 2011. p. 999-1006.
-
(2011)
Proc. ICCV
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
13
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
Providence, RH: IEEE
-
Gong B, Shi Y, Sha F, Grauman K. Geodesic flow kernel for unsupervised domain adaptation. In: Proc. CVPR. Providence, RH: IEEE; 2012. p. 2066-2073.
-
(2012)
Proc. CVPR
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
14
-
-
33646528415
-
Measuring statistical dependence with Hilbert-Schmidt norms
-
Jain S, Lee WS, editors
-
Gretton A, Bousquet O, Smola AJ, Schölkopf B. Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain S, Lee WS, editors. Proc. Algorithmic Learn. Theory; 2005. p. 63-77.
-
(2005)
Proc. Algorithmic Learn. Theory
, pp. 63-77
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.J.3
Schölkopf, B.4
-
15
-
-
84907018084
-
Domain adaptation with regularized optimal transport
-
Nancy, France
-
Courty N, Flamary R, Tuia D. Domain adaptation with regularized optimal transport. In: Proc. ECML. Nancy, France; 2014. p. 274-289.
-
(2014)
Proc. ECML
, pp. 274-289
-
-
Courty, N.1
Flamary, R.2
Tuia, D.3
-
16
-
-
80052895155
-
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
-
Colorado Springs, CO
-
Kulis B, Saenko K, Darrell T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: Proc. CVPR. Colorado Springs, CO; 2011. p. 1785-1792.
-
(2011)
Proc. CVPR
, pp. 1785-1792
-
-
Kulis, B.1
Saenko, K.2
Darrell, T.3
-
17
-
-
84866651199
-
Robust visual domain adaptation with low-rank reconstruction
-
Providence, RH
-
Jhuo IH, Liu D, Lee DT, Chang SF. Robust visual domain adaptation with low-rank reconstruction. In: Proc. CVPR. Providence, RH; 2012. p. 2168-2175.
-
(2012)
Proc. CVPR
, pp. 2168-2175
-
-
Jhuo, I.H.1
Liu, D.2
Lee, D.T.3
Chang, S.F.4
-
18
-
-
85083950659
-
Efficient learning of domain invariant image representations
-
Scottsdale, AZ
-
Hoffman J, Rodner E, Donahue J, Saenko K, Darrell T. Efficient Learning of Domain Invariant Image Representations. In: Proc. ICLR. Scottsdale, AZ; 2013.
-
(2013)
Proc. ICLR
-
-
Hoffman, J.1
Rodner, E.2
Donahue, J.3
Saenko, K.4
Darrell, T.5
-
19
-
-
84887357900
-
Semi-supervised domain adaptation with instance constraints
-
Donahue J, Hoffman J, Rodner E, Saenko K, Darrell T. Semi-supervised Domain Adaptation with Instance Constraints. In: CVPR; 2013. p. 668-675.
-
(2013)
CVPR
, pp. 668-675
-
-
Donahue, J.1
Hoffman, J.2
Rodner, E.3
Saenko, K.4
Darrell, T.5
-
20
-
-
84862595041
-
Semisupervised alignment of manifolds
-
Cowell RG, Ghahramani Z, editors, London, UK
-
Ham J, Lee D, Saul L. Semisupervised alignment of manifolds. In: Cowell RG, Ghahramani Z, editors. Proc. AISTATS. London, UK; 2005. p. 120-127.
-
(2005)
Proc. AISTATS
, pp. 120-127
-
-
Ham, J.1
Lee, D.2
Saul, L.3
-
21
-
-
84881337055
-
Manifold alignment
-
Ma Y, Fu Y, editors, CRC Press
-
Wang C, Krafft P, Mahadevan S. Manifold alignment. In: Ma Y, Fu Y, editors. Manifold Learning: Theory and Applications. CRC Press; 2011.
-
(2011)
Manifold Learning: Theory and Applications
-
-
Wang, C.1
Krafft, P.2
Mahadevan, S.3
-
22
-
-
0000107975
-
Relations between two sets of variates
-
Dec.
-
Hotelling H. Relations Between Two Sets of Variates. Biometrika. 1936 Dec; 28 (3/4):321-377. doi: 10. 1093/biomet/28.3-4.321
-
(1936)
Biometrika.
, vol.28
, Issue.3-4
, pp. 321-377
-
-
Hotelling, H.1
-
23
-
-
84863261451
-
Heterogeneous domain adaptation using manifold alignment
-
Barcelona, Spain
-
Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment. In: IJCAI. Barcelona, Spain; 2011. p. 1541-1546.
-
(2011)
IJCAI
, pp. 1541-1546
-
-
Wang, C.1
Mahadevan, S.2
-
25
-
-
0347243182
-
Nonlinear component analysis as a kernel Eigenvalue problem
-
Schölkopf B, Smola AJ, Müller KR. Nonlinear component analysis as a kernel Eigenvalue problem. Neural Comput. 1998;10:1299-1319. doi: 10.1162/089976698300017467
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.R.3
-
26
-
-
84898835181
-
Transfer feature learning with joint distribution adaptation
-
Long M, Wang J, Ding G, Sun J, Yu PS. Transfer Feature Learning with Joint Distribution Adaptation. In: ICCV; 2013. p. 2200-2207.
-
(2013)
ICCV
, pp. 2200-2207
-
-
Long, M.1
Wang, J.2
Ding, G.3
Sun, J.4
Yu, P.S.5
-
27
-
-
84871809824
-
Graph matching for adaptation in remote sensing
-
Tuia D, Muñoz-Marí J, Gómez-Chova L, Malo J. Graph matching for adaptation in remote sensing. IEEE Trans Geosci Remote Sens. 2013;51(1):329-341. doi: 10.1109/TGRS.2012.2200045
-
(2013)
IEEE Trans Geosci Remote Sens.
, vol.51
, Issue.1
, pp. 329-341
-
-
Tuia, D.1
Muñoz-Marí, J.2
Gómez-Chova, L.3
Malo, J.4
-
28
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
MIT Press
-
Mika S, Schölkopf B, Smola A, Müller KR, Scholz M, Rätsch G. Kernel PCA and De-Noising in Feature Spaces. In: NIPS 11. MIT Press; 1999. p. 536-542.
-
(1999)
NIPS 11
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.3
Müller, K.R.4
Scholz, M.5
Rätsch, G.6
-
30
-
-
9244258603
-
The pre-image problem in kernel methods
-
15565778
-
Kwok JT, Tsang IW. The Pre-Image Problem in Kernel Methods. IEEE Trans Neural Networks. 2004;15(6):1517-1525. doi: 10.1109/TNN.2004.837781 PMID: 15565778
-
(2004)
IEEE Trans Neural Networks.
, vol.15
, Issue.6
, pp. 1517-1525
-
-
Kwok, J.T.1
Tsang, I.W.2
-
33
-
-
84903272411
-
Semisupervised manifold alignment of multimodal remote sensing images
-
Tuia D, Volpi M, Trolliet M, Camps-Valls G. Semisupervised Manifold Alignment of Multimodal Remote Sensing Images. IEEE Trans Geosci Remote Sens. 2014;52(12):7708-7720. doi: 10.1109/TGRS. 2014.2317499
-
(2014)
IEEE Trans Geosci Remote Sens.
, vol.52
, Issue.12
, pp. 7708-7720
-
-
Tuia, D.1
Volpi, M.2
Trolliet, M.3
Camps-Valls, G.4
-
37
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans Patt Anal Mach Intell. 2007;29(1):40-51. doi: 10.1109/TPAMI.2007.250598
-
(2007)
IEEE Trans Patt Anal Mach Intell.
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.J.4
Yang, Q.5
Lin, S.6
-
38
-
-
84912535632
-
Kernel nonnegative matrix factorization without the pre-image problem
-
Reims, France
-
Zhu F, P H, Kallas M. Kernel nonnegative matrix factorization without the pre-image problem. In: Machine Learning for Signal Processing. Reims, France; 2014.
-
(2014)
Machine Learning for Signal Processing
-
-
Zhu, F.1
Kallas, M.2
-
41
-
-
22844440983
-
On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA
-
Shawe-Taylor J, Williams CKI, Cristianini N, Kandola J. On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Trans Info Theory. 2005;51(7):2510-2522. doi: 10.1109/TIT.2005.850052
-
(2005)
IEEE Trans Info Theory
, vol.51
, Issue.7
, pp. 2510-2522
-
-
Shawe-Taylor, J.1
Williams, C.K.I.2
Cristianini, N.3
Kandola, J.4
-
42
-
-
67650447738
-
Efficient sparse kernel feature extraction based on partial least squares
-
19542571
-
Dhanjal C, Gunn SR, Shawe-Taylor J. Efficient Sparse Kernel Feature Extraction Based on Partial Least Squares. IEEE Trans Pattern Anal Mach Intell. 2009;31(8):1347-1361. doi: 10.1109/TPAMI. 2008.171 PMID: 19542571
-
(2009)
IEEE Trans Pattern Anal Mach Intell.
, vol.31
, Issue.8
, pp. 1347-1361
-
-
Dhanjal, C.1
Gunn, S.R.2
Shawe-Taylor, J.3
-
43
-
-
84919881041
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In: Proceedings of The 31st International Conference on Machine Learning; 2014. p. 647-655.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
-
44
-
-
51949098112
-
Classification using intersection kernel support vector machines is efficient
-
24-26 June 2008, Anchorage, Alaska, USA
-
Maji S, Berg AC, Malik J. Classification using intersection kernel support vector machines is efficient. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA; 2008.
-
(2008)
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008)
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
45
-
-
34547972314
-
A dependence maximization view of clustering
-
Corvallis, OR
-
Song L, Smola A, Gretton A, Borgwardt KM. A Dependence Maximization View of Clustering. In: Proc. ICML. Corvallis, OR; 2007. p. 815-822.
-
(2007)
Proc. ICML
, pp. 815-822
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
-
47
-
-
84919825559
-
Randomized nonlinear component analysis
-
Beijing, China
-
Lopez-Paz D, Sra S, Smola AJ, Ghahramani Z, Schölkopf B. Randomized Nonlinear Component Analysis. In: Proceedings of the 31 st International Conference on Machine Learning. Beijing, China; 2014. p. 1-9.
-
(2014)
Proceedings of the 31 St International Conference on Machine Learning
, pp. 1-9
-
-
Lopez-Paz, D.1
Sra, S.2
Smola, A.J.3
Ghahramani, Z.4
Schölkopf, B.5
|