메뉴 건너뛰기




Volumn 11, Issue 2, 2016, Pages

Kernel manifold alignment for domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION ALGORITHM; CORRELATION ANALYSIS; DATA ANALYSIS; DOMAIN ADAPTATION; FACIAL RECOGNITION; KERNEL METHOD; KERNEL METHOD FOR MANIFOLD ALIGNMENT; LEARNING THEORY; MACHINE LEARNING; MATHEMATICAL ANALYSIS; MATHEMATICAL COMPUTING; MATHEMATICAL PARAMETERS; NONLINEAR SYSTEM; RADEMACHER COMPLEXITY; SEMI SUPERVISED MANIFOLD ALIGNMENT; ALGORITHM; AUTOMATED PATTERN RECOGNITION; COMPUTER ASSISTED DIAGNOSIS; DATA MINING; FACIAL EXPRESSION; HUMAN; INFORMATION RETRIEVAL; PROCEDURES; STATISTICAL ANALYSIS; STATISTICS AND NUMERICAL DATA; UTILIZATION;

EID: 84960539553     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0148655     Document Type: Article
Times cited : (85)

References (47)
  • 2
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Berlin, Heidelberg: Springer-Verlag
    • Saenko K, Kulis B, Fritz M, Darrell T. Adapting visual category models to new domains. In: Proc. ECCV. Berlin, Heidelberg: Springer-Verlag; 2010. p. 213-226.
    • (2010) Proc. ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 3
    • 57149140986 scopus 로고    scopus 로고
    • Learning to recognize activities from the wrong view point
    • Berlin, Heidelberg: Springer-Verlag
    • Farhadi A, Tabrizi MK. Learning to Recognize Activities from the Wrong View Point. In: Proc. ECCV. Berlin, Heidelberg: Springer-Verlag; 2008. p. 154-166.
    • (2008) Proc. ECCV , pp. 154-166
    • Farhadi, A.1    Tabrizi, M.K.2
  • 4
    • 84865579385 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • 22201057
    • Duan L, Xu D, Tsang IW, Luo J. Visual Event Recognition in Videos by Learning from Web Data. IEEE Trans Pattern Anal Mach Intell. 2012;34(9):1667-1680. doi: 10.1109/TPAMI.2011.265 PMID: 22201057
    • (2012) IEEE Trans Pattern Anal Mach Intell. , vol.34 , Issue.9 , pp. 1667-1680
    • Duan, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 5
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • Colorado Springs, CO
    • Torralba A, Efros AA. Unbiased look at dataset bias. In: Proc. CVPR. Colorado Springs, CO; 2011. p. 1521-1528.
    • (2011) Proc. CVPR , pp. 1521-1528
    • Torralba, A.1    Efros, A.A.2
  • 7
    • 85032751052 scopus 로고    scopus 로고
    • Visual domain adaptation: A survey of recent advances
    • May
    • Patel VM, Gopalan R, Li R, Chellappa R. Visual Domain Adaptation: A survey of recent advances. IEEE Signal Proc Mag. 2015 May; 32(3):53-69. doi: 10.1109/MSP.2014.2347059
    • (2015) IEEE Signal Proc Mag. , vol.32 , Issue.3 , pp. 53-69
    • Patel, V.M.1    Gopalan, R.2    Li, R.3    Chellappa, R.4
  • 8
    • 84866648988 scopus 로고    scopus 로고
    • Generalized multiview analysis: A discriminative latent space
    • Providence, RH
    • Jacobs DW, Daume H, Kumar A, Sharma A. Generalized Multiview Analysis: A discriminative latent space. In: Proc. CVPR. Providence, RH; 2012. p. 2160-2167.
    • (2012) Proc. CVPR , pp. 2160-2167
    • Jacobs, D.W.1    Daume, H.2    Kumar, A.3    Sharma, A.4
  • 9
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • Lai PL, Fyfe C. Kernel and Nonlinear Canonical Correlation Analysis. In: Int. J. Neural Sys.; 2000. p. 365-377. doi: 10.1142/S012906570000034X
    • (2000) Int. J. Neural Sys. , pp. 365-377
    • Lai, P.L.1    Fyfe, C.2
  • 10
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • 21095864
    • Pan SJ, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans Neural Networks. 2011;22:199-210. doi: 10.1109/TNN.2010.2091281 PMID: 21095864
    • (2011) IEEE Trans Neural Networks. , vol.22 , pp. 199-210
    • Pan, S.J.1    Yang, Q.2
  • 12
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Barcelona, Spain
    • Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach. In: Proc. ICCV. Barcelona, Spain; 2011. p. 999-1006.
    • (2011) Proc. ICCV , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 13
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Providence, RH: IEEE
    • Gong B, Shi Y, Sha F, Grauman K. Geodesic flow kernel for unsupervised domain adaptation. In: Proc. CVPR. Providence, RH: IEEE; 2012. p. 2066-2073.
    • (2012) Proc. CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 15
    • 84907018084 scopus 로고    scopus 로고
    • Domain adaptation with regularized optimal transport
    • Nancy, France
    • Courty N, Flamary R, Tuia D. Domain adaptation with regularized optimal transport. In: Proc. ECML. Nancy, France; 2014. p. 274-289.
    • (2014) Proc. ECML , pp. 274-289
    • Courty, N.1    Flamary, R.2    Tuia, D.3
  • 16
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • Colorado Springs, CO
    • Kulis B, Saenko K, Darrell T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: Proc. CVPR. Colorado Springs, CO; 2011. p. 1785-1792.
    • (2011) Proc. CVPR , pp. 1785-1792
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 17
    • 84866651199 scopus 로고    scopus 로고
    • Robust visual domain adaptation with low-rank reconstruction
    • Providence, RH
    • Jhuo IH, Liu D, Lee DT, Chang SF. Robust visual domain adaptation with low-rank reconstruction. In: Proc. CVPR. Providence, RH; 2012. p. 2168-2175.
    • (2012) Proc. CVPR , pp. 2168-2175
    • Jhuo, I.H.1    Liu, D.2    Lee, D.T.3    Chang, S.F.4
  • 18
  • 19
    • 84887357900 scopus 로고    scopus 로고
    • Semi-supervised domain adaptation with instance constraints
    • Donahue J, Hoffman J, Rodner E, Saenko K, Darrell T. Semi-supervised Domain Adaptation with Instance Constraints. In: CVPR; 2013. p. 668-675.
    • (2013) CVPR , pp. 668-675
    • Donahue, J.1    Hoffman, J.2    Rodner, E.3    Saenko, K.4    Darrell, T.5
  • 20
    • 84862595041 scopus 로고    scopus 로고
    • Semisupervised alignment of manifolds
    • Cowell RG, Ghahramani Z, editors, London, UK
    • Ham J, Lee D, Saul L. Semisupervised alignment of manifolds. In: Cowell RG, Ghahramani Z, editors. Proc. AISTATS. London, UK; 2005. p. 120-127.
    • (2005) Proc. AISTATS , pp. 120-127
    • Ham, J.1    Lee, D.2    Saul, L.3
  • 22
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Dec.
    • Hotelling H. Relations Between Two Sets of Variates. Biometrika. 1936 Dec; 28 (3/4):321-377. doi: 10. 1093/biomet/28.3-4.321
    • (1936) Biometrika. , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 23
    • 84863261451 scopus 로고    scopus 로고
    • Heterogeneous domain adaptation using manifold alignment
    • Barcelona, Spain
    • Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment. In: IJCAI. Barcelona, Spain; 2011. p. 1541-1546.
    • (2011) IJCAI , pp. 1541-1546
    • Wang, C.1    Mahadevan, S.2
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel Eigenvalue problem
    • Schölkopf B, Smola AJ, Müller KR. Nonlinear component analysis as a kernel Eigenvalue problem. Neural Comput. 1998;10:1299-1319. doi: 10.1162/089976698300017467
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 26
    • 84898835181 scopus 로고    scopus 로고
    • Transfer feature learning with joint distribution adaptation
    • Long M, Wang J, Ding G, Sun J, Yu PS. Transfer Feature Learning with Joint Distribution Adaptation. In: ICCV; 2013. p. 2200-2207.
    • (2013) ICCV , pp. 2200-2207
    • Long, M.1    Wang, J.2    Ding, G.3    Sun, J.4    Yu, P.S.5
  • 30
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • 15565778
    • Kwok JT, Tsang IW. The Pre-Image Problem in Kernel Methods. IEEE Trans Neural Networks. 2004;15(6):1517-1525. doi: 10.1109/TNN.2004.837781 PMID: 15565778
    • (2004) IEEE Trans Neural Networks. , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.T.1    Tsang, I.W.2
  • 33
    • 84903272411 scopus 로고    scopus 로고
    • Semisupervised manifold alignment of multimodal remote sensing images
    • Tuia D, Volpi M, Trolliet M, Camps-Valls G. Semisupervised Manifold Alignment of Multimodal Remote Sensing Images. IEEE Trans Geosci Remote Sens. 2014;52(12):7708-7720. doi: 10.1109/TGRS. 2014.2317499
    • (2014) IEEE Trans Geosci Remote Sens. , vol.52 , Issue.12 , pp. 7708-7720
    • Tuia, D.1    Volpi, M.2    Trolliet, M.3    Camps-Valls, G.4
  • 37
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans Patt Anal Mach Intell. 2007;29(1):40-51. doi: 10.1109/TPAMI.2007.250598
    • (2007) IEEE Trans Patt Anal Mach Intell. , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.J.4    Yang, Q.5    Lin, S.6
  • 38
    • 84912535632 scopus 로고    scopus 로고
    • Kernel nonnegative matrix factorization without the pre-image problem
    • Reims, France
    • Zhu F, P H, Kallas M. Kernel nonnegative matrix factorization without the pre-image problem. In: Machine Learning for Signal Processing. Reims, France; 2014.
    • (2014) Machine Learning for Signal Processing
    • Zhu, F.1    Kallas, M.2
  • 41
    • 22844440983 scopus 로고    scopus 로고
    • On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA
    • Shawe-Taylor J, Williams CKI, Cristianini N, Kandola J. On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Trans Info Theory. 2005;51(7):2510-2522. doi: 10.1109/TIT.2005.850052
    • (2005) IEEE Trans Info Theory , vol.51 , Issue.7 , pp. 2510-2522
    • Shawe-Taylor, J.1    Williams, C.K.I.2    Cristianini, N.3    Kandola, J.4
  • 42
    • 67650447738 scopus 로고    scopus 로고
    • Efficient sparse kernel feature extraction based on partial least squares
    • 19542571
    • Dhanjal C, Gunn SR, Shawe-Taylor J. Efficient Sparse Kernel Feature Extraction Based on Partial Least Squares. IEEE Trans Pattern Anal Mach Intell. 2009;31(8):1347-1361. doi: 10.1109/TPAMI. 2008.171 PMID: 19542571
    • (2009) IEEE Trans Pattern Anal Mach Intell. , vol.31 , Issue.8 , pp. 1347-1361
    • Dhanjal, C.1    Gunn, S.R.2    Shawe-Taylor, J.3
  • 45
    • 34547972314 scopus 로고    scopus 로고
    • A dependence maximization view of clustering
    • Corvallis, OR
    • Song L, Smola A, Gretton A, Borgwardt KM. A Dependence Maximization View of Clustering. In: Proc. ICML. Corvallis, OR; 2007. p. 815-822.
    • (2007) Proc. ICML , pp. 815-822
    • Song, L.1    Smola, A.2    Gretton, A.3    Borgwardt, K.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.