메뉴 건너뛰기




Volumn , Issue , 2015, Pages 338-342

Phenology monitoring of agricultural plants using texture analysis

Author keywords

agriculture; glcm features; HOG features; image processing; plant phenology; textural analysis

Indexed keywords

AGRICULTURAL MACHINERY; ARTIFICIAL INTELLIGENCE; BIOLOGY; CAMERAS; IMAGE PROCESSING; LEARNING SYSTEMS; POPULATION STATISTICS; VEGETATION;

EID: 84960398901     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/Agro-Geoinformatics.2015.7248114     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 1
    • 84920408049 scopus 로고    scopus 로고
    • A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications
    • Broich, M. , Huete, A, "A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications," Environmental Modelling & Software, 64: 191-204, 2015.
    • (2015) Environmental Modelling & Software , vol.64 , pp. 191-204
    • Broich, M.1    Huete, A.2
  • 4
    • 84872106892 scopus 로고    scopus 로고
    • Ecosystem functional units characterized by satellite observed phenology and productivity graDients: A case study for Europe
    • Iv its, E. , Cherlet, M. , Mehl, W. , Sommer, S. , "Ecosystem functional units characterized by satellite observed phenology and productivity graDients: A case study for Europe," Ecological Indicators, 27:17-28, 2013.
    • (2013) Ecological Indicators , vol.27 , pp. 17-28
    • Ivits, E.1    Cherlet, M.2    Mehl, W.3    Sommer, S.4
  • 7
    • 84982815298 scopus 로고    scopus 로고
    • An adaptive spatiotemporal agricultural cropland temperature prediction system based on ground and satellite measurements
    • Bagis, S. , Ustundag, S., Ozelkan, E. , "An adaptive spatiotemporal agricultural cropland temperature prediction system based on ground and satellite measurements," International Conference on Agro Geoinformatics, pages: 1-6, 2012.
    • (2012) International Conference on Agro Geoinformatics, Pages , pp. 1-6
    • Bagis, S.1    Ustundag, S.2    Ozelkan, E.3
  • 9
    • 74049120234 scopus 로고    scopus 로고
    • Advances in Non-Destructive Measurement and 3D Visualization Methods for Plant Root Based on Machine Vision
    • Zhou, X. , Luo, x., "Advances in Non-Destructive Measurement and 3D Visualization Methods for Plant Root Based on Machine Vision,"lnternational Conference on Biomedical Engineering and Informatics, pp: 1-5, 2009.
    • (2009) Lnternational Conference on Biomedical Engineering and Informatics , pp. 1-5
    • Zhou, X.1    Luo, X.2
  • 14
    • 49149093767 scopus 로고    scopus 로고
    • A comparative study between wavelet and contourlet transform features for textural image classification
    • Javidan.R, Masnadi-Shirazi.M. A, Azimifar. Z, and Sadreddini. M.H, "A Comparative Study between Wavelet and Contourlet Transform Features for Textural Image Classification," ICTT A, pp. 1-5, 2008.
    • (2008) ICTT A , pp. 1-5
    • Javidan, R.1    Masnadi-Shirazi, M.A.2    Azimifa, R.Z.3    Sadreddini, M.H.4
  • 15
    • 65149098349 scopus 로고    scopus 로고
    • Dominant local binary patterns for texture classification
    • Liao.S, Law. M.W. K, Chung. A.C. S, "Dominant Local Binary Patterns for Texture Classification," IEEE TIP, 18(5): 1107-1118, 2009.
    • (2009) IEEE TIP , vol.18 , Issue.5 , pp. 1107-1118
    • Liao, S.1    Law, M.W.K.2    Chung, A.C.S.3
  • 16
    • 33751026208 scopus 로고    scopus 로고
    • Contourlet Spectral Histogram for Texture Classification
    • Long.Z, and Younan. N.H, "Contourlet Spectral Histogram for Texture Classification," IEEE SSIAI, pp. 31-35, 2006.
    • (2006) IEEE SSIAI , pp. 31-35
    • Long, Z.1    Younan, N.H.2
  • 17
    • 53149131349 scopus 로고    scopus 로고
    • Interest of the multiresolution analysis based on the co-occurrence matrix for texture classification
    • Othmen. M. B, Sayadi.M, and Fnaiech.F, "Interest of the MultiResolution Analysis Based on the Co-occurrence Matrix for Texture Classification," IEEE MELECON, pp. 852-856, 2008.
    • (2008) IEEE Melecon , pp. 852-856
    • Othmen, M.B.1    Sayadi, M.2    Fnaiech, F.3
  • 18
    • 84862885070 scopus 로고    scopus 로고
    • Texture classification using wavelet frame representation based feature
    • Qiao. Y, and Sun.S, 'Texture Classification Using Wavelet Frame Representation Based Feature," IEEE ICEIS, pp. 1-4, 2006.
    • (2006) IEEE ICEIS , pp. 1-4
    • Qiao, Y.1    Sun, S.2
  • 19
    • 67650553262 scopus 로고    scopus 로고
    • Texture classification of woven fabric based on a glcm method and using multiclass support vector machine
    • Salem. Y.B, and Nasri.S, "Texture Classification of Woven Fabric Based on a GLCM Method and using Multiclass Support Vector Machine," SSD, pp. 1-8, 2009.
    • (2009) SSD , pp. 1-8
    • Salem, Y.B.1    Nasri, S.2
  • 20
    • 84910012939 scopus 로고    scopus 로고
    • Determination of the varieties and characteristics of wheat seeds grown in Turkey using image processing techniques
    • Gunes, E. O. , Aygun, S., Kirci, M. , Kalateh, A, Cakir, Y. , "Determination of the varieties and characteristics of wheat seeds grown in Turkey using image processing techniques," International Conference on Agro-geoinformatics, pages: I-4, 2014.
    • (2014) International Conference on Agro-geoinformatics , pp. I-4
    • Gunes, E.O.1    Aygun, S.2    Kirci, M.3    Kalateh, A.4    Cakir, Y.5
  • 21
    • 0029273845 scopus 로고
    • An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters
    • Baraldi, A, Parmiggiani, F. , "An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters," IEEE Transactions on Geoscience and Remote Sensing, 33(2):293-304, 1995.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.2 , pp. 293-304
    • Baraldi, A.1    Parmiggiani, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.