메뉴 건너뛰기




Volumn 22, Issue 12, 2015, Pages 2304-2308

Lightweight Lossy Compression of Biometric Patterns via Denoising Autoencoders

Author keywords

Autoencoders; biometric patterns; lossy compression; wearable devices

Indexed keywords

ALGORITHMS; BIOMETRICS; BLOOD PRESSURE; CONSTRAINED OPTIMIZATION; LEARNING SYSTEMS; WEARABLE TECHNOLOGY;

EID: 84960156366     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2015.2476667     Document Type: Article
Times cited : (65)

References (22)
  • 1
    • 84907197951 scopus 로고    scopus 로고
    • On the performance of lossy compression schemes for energy constrained sensor networking
    • D. Zordan, B. Martinez, I. Villajosana, M. Rossi, "On the performance of lossy compression schemes for energy constrained sensor networking," ACM Trans. Sensor Netw., vol. 11, no. 1, pp. 15:1-15:34, 2014.
    • (2014) ACM Trans. Sensor Netw. , vol.11 , Issue.1 , pp. 151-1534
    • Zordan, D.1    Martinez, B.2    Villajosana, I.3    Rossi, M.4
  • 2
    • 0036129958 scopus 로고    scopus 로고
    • An efficient coding algorithm for the compression of ECG signals using the wavelet transform
    • B. A. Rajoub, "An efficient coding algorithm for the compression of ECG signals using the wavelet transform," IEEE Trans. Biomed. Eng., vol. 40, no. 4, pp. 355-362, 2002.
    • (2002) IEEE Trans. Biomed. Eng. , vol.40 , Issue.4 , pp. 355-362
    • Rajoub, B.A.1
  • 4
    • 0022130848 scopus 로고
    • Evaluation of the fan method of adaptive sampling on human electrocardiograms
    • D. A. DiPersio and E. C. Barr, "Evaluation of the fan method of adaptive sampling on human electrocardiograms," Med. Biol. Eng. Comput., vol. 23, no. 5, pp. 401-410, 1985.
    • (1985) Med. Biol. Eng. Comput. , vol.23 , Issue.5 , pp. 401-410
    • DiPersio, D.A.1    Barr, E.C.2
  • 5
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 7
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Contr. Signals Syst., vol. 2, no. 4, pp. 303-314, 1989.
    • (1989) Math. Contr. Signals Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw, vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 9
    • 0029061996 scopus 로고
    • Generalizations of principal component analysis, optimization problems, neural networks
    • J. Karhunen and J. Joutsensalo, "Generalizations of principal component analysis, optimization problems, neural networks," Neural Netw., vol. 8, no. 4, pp. 549-562, 1995.
    • (1995) Neural Netw. , vol.8 , Issue.4 , pp. 549-562
    • Karhunen, J.1    Joutsensalo, J.2
  • 10
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, "Optimal unsupervised learning in a single-layer linear feedforward neural network," Neural Netw., vol. 2, no. 6, pp. 459-473, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.D.1
  • 14
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp, "Auto-association by multilayer perceptrons and singular value decomposition," Biol. Cybern., vol. 59, no. 4-5, pp. 291-294, 1988.
    • (1988) Biol. Cybern. , vol.59 , Issue.4-5 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 15
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • N. Japkowicz, S. Hanson, M. Gluck, "Nonlinear autoassociation is not equivalent to PCA," Neural Computat., vol. 12, no. 3, pp. 531-545, 2000.
    • (2000) Neural Computat. , vol.12 , Issue.3 , pp. 531-545
    • Japkowicz, N.1    Hanson, S.2    Gluck, M.3
  • 16
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 17
    • 38349013344 scopus 로고    scopus 로고
    • Analysis of first-derivative based QRS detection algorithms
    • N. M. Arzeno, Z.-D. Deng, C.-S. Poon, "Analysis of first-derivative based QRS detection algorithms," IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 478-484, 2008.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.2 , pp. 478-484
    • Arzeno, N.M.1    Deng, Z.-D.2    Poon, C.-S.3
  • 18
    • 0027765654 scopus 로고
    • An approach to QRS complex detection using mathematical morphology
    • P. E. Trahanias, "An approach to QRS complex detection using mathematical morphology," IEEE Trans. Biomed. Eng., vol. 40, no. 2, pp. 201-205, 1993.
    • (1993) IEEE Trans. Biomed. Eng. , vol.40 , Issue.2 , pp. 201-205
    • Trahanias, P.E.1
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi et al., "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Int. Joint Conf. Artificial Intelligence, 1995, vol. 14, no. 2, pp. 1137-1145.
    • (1995) Int. Joint Conf. Artificial Intelligence , vol.14 , Issue.2 , pp. 1137-1145
    • Kohavi, R.1
  • 20
    • 77955381133 scopus 로고    scopus 로고
    • Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods
    • S. Borra and A. Di Ciaccio, "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods," Computat. Statist. Data Anal., vol. 54, no. 12, pp. 2976-2989, 2010.
    • (2010) Computat. Statist. Data Anal. , vol.54 , Issue.12 , pp. 2976-2989
    • Borra, S.1    Di Ciaccio, A.2
  • 21
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database
    • M. Saeed et al., "Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database," Crit. Care Med., vol. 39, no. 5, pp. 952-960, 2011.
    • (2011) Crit. Care Med. , vol.39 , Issue.5 , pp. 952-960
    • Saeed, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.