메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 2483-2489

Efficient active learning of halfspaces via query synthesis

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; CONVEX OPTIMIZATION; GEOMETRY; ITERATIVE METHODS; LEARNING SYSTEMS; OPTIMIZATION; PRINCIPAL COMPONENT ANALYSIS; QUERY PROCESSING; TEXT PROCESSING;

EID: 84960145136     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (31)
  • 1
    • 0001025146 scopus 로고    scopus 로고
    • Query learning strategies using boosting and bagging
    • Abe, N., and Mamitsuka, H. 1998. Query learning strategies using boosting and bagging. In ICML.
    • (1998) ICML
    • Abe, N.1    Mamitsuka, H.2
  • 3
    • 84937847157 scopus 로고    scopus 로고
    • Active and passive learning of linear separators under log-concave distributions
    • Balean, M. F., and Long, P. M. 2013. Active and passive learning of linear separators under log-concave distributions. In COLT.
    • (2013) COLT
    • Balean, M.F.1    Long, P.M.2
  • 5
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • Brinker, K. 2003. Incorporating diversity in active learning with support vector machines. In ICML, 59-66.
    • (2003) ICML , pp. 59-66
    • Brinker, K.1
  • 6
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generalization with active learning. Machine learning 15(2):201-221.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine learning 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 61749103998 scopus 로고    scopus 로고
    • Analysis of perceptron-based active learning
    • Dasgupta, S.; Kalai, A. T.; and Monteleoni, C. 2009. Analysis of perceptron-based active learning. JMLR 10:281-299.
    • (2009) JMLR , vol.10 , pp. 281-299
    • Dasgupta, S.1    Kalai, A.T.2    Monteleoni, C.3
  • 10
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • Dasgupta, S. 2005a. Analysis of a greedy active learning strategy. NIPS 17:337-344.
    • (2005) NIPS , vol.17 , pp. 337-344
    • Dasgupta, S.1
  • 11
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • Dasgupta, S. 2005b. Coarse sample complexity bounds for active learning. In NIPS.
    • (2005) NIPS
    • Dasgupta, S.1
  • 12
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and Lin, C.-J. 2008. LIBLINEAR: A library for large linear classification. JMLR 9:1871-1874.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 13
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund, Y.; Seung, H. S.; Shamir, E.; and Tishby, N. 1997. Selective sampling using the query by committee algorithm. Machine learning 28(2-3):133-168.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 15
    • 64249139133 scopus 로고    scopus 로고
    • The automation of science
    • King, R. D., et al. 2009. The automation of science. Science 324(5923):85-89.
    • (2009) Science , vol.324 , Issue.5923 , pp. 85-89
    • King, R.D.1
  • 17
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • Liu, Y. 2004. Active learning with support vector machine applied to gene expression data for cancer classification. Journal of chemical information and computer sciences 44(6):1936-1941.
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , Issue.6 , pp. 1936-1941
    • Liu, Y.1
  • 19
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM and pool-based active learning for text classication
    • McCallum, A., and Nigam, K. 1998. Employing EM and pool-based active learning for text classication. In ICML.
    • (1998) ICML
    • McCallum, A.1    Nigam, K.2
  • 20
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell, T. M. 1982. Generalization as search. Artificial intelligence 18(2):203-226.
    • (1982) Artificial Intelligence , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 22
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through monte carlo estimation of error reduction
    • Roy, N., and McCallum, A. 2001. Toward optimal active learning through monte carlo estimation of error reduction. In ICML.
    • (2001) ICML
    • Roy, N.1    McCallum, A.2
  • 23
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • Schein, A. I., and Ungar, L. H. 2007. Active learning for logistic regression: an evaluation. Machine Learning 68(3):235-265.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 24
    • 84904806792 scopus 로고    scopus 로고
    • Online active learning methods for fast label-efficient spam filtering
    • Sculley, D. 2007. Online active learning methods for fast label-efficient spam filtering. In CEAS.
    • (2007) CEAS
    • Sculley, D.1
  • 25
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin-Madison
    • Settles, B. 2010. Active learning literature survey. Computer Science Technical Report 1648, University of Wisconsin-Madison.
    • (2010) Computer Science Technical Report
    • Settles, B.1
  • 26
    • 84873124152 scopus 로고    scopus 로고
    • From theories to queries: Active learning in practice
    • Settles, B. 2011. From theories to queries: Active learning in practice. Challenges in Machine Learning 6:1-18.
    • (2011) Challenges in Machine Learning , vol.6 , pp. 1-18
    • Settles, B.1
  • 27
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., and Koller, D. 2002. Support vector machine active learning with applications to text classification. JMLR 2:45-66.
    • (2002) JMLR , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 28
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. G. 1984. A theory of the learnable. Communications of the ACM 27(11):1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 30
    • 35248825961 scopus 로고    scopus 로고
    • Representative sampling for text classification using support vector machines
    • Springer
    • Xu, Z.; Yu, K.; Tresp, V.; Xu, X.; and Wang, J. 2003. Representative sampling for text classification using support vector machines. In Advances in Information Retrieval, 393-407. Springer.
    • (2003) Advances in Information Retrieval , pp. 393-407
    • Xu, Z.1    Yu, K.2    Tresp, V.3    Xu, X.4    Wang, J.5
  • 31
    • 84865422696 scopus 로고    scopus 로고
    • Recent advances of large-scale linear classification
    • Yuan, G.-X.; Ho, C.-H.; and Lin, C.-J. 2012. Recent advances of large-scale linear classification. Proceedings of the IEEE 100(9):2584-2603.
    • (2012) Proceedings of the IEEE , vol.100 , Issue.9 , pp. 2584-2603
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.