메뉴 건너뛰기




Volumn 209, Issue , 2016, Pages 148-156

Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors

Author keywords

Biochar; Direct interspecies electron transfer (DIET); Syntrophic metabolism of propionate and butyrate; Up flow anaerobic sludge blanket (UASB)

Indexed keywords

ELECTRIC CONNECTORS; ELECTRON TRANSITIONS; METABOLISM; MICROBIOLOGY; MICROORGANISMS; PHYSIOLOGY; RNA;

EID: 84960120613     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2016.03.005     Document Type: Article
Times cited : (264)

References (34)
  • 4
    • 84903692745 scopus 로고    scopus 로고
    • Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
    • Cruz Viggi C., Rossetti S., Fazi S., Paiano P., Majone M., Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 2014, 48:7536-7543.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7536-7543
    • Cruz Viggi, C.1    Rossetti, S.2    Fazi, S.3    Paiano, P.4    Majone, M.5    Aulenta, F.6
  • 5
    • 0035319411 scopus 로고    scopus 로고
    • Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei
    • de Bok F.A., Stams A.J., Dijkema C., Boone D.R. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Environ. Microbiol. 2001, 67:1800-1804.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 1800-1804
    • de Bok, F.A.1    Stams, A.J.2    Dijkema, C.3    Boone, D.R.4
  • 6
    • 1542268281 scopus 로고    scopus 로고
    • Interspecies electron transfer in methanogenic propionate degrading consortia
    • de Bok F.A.M., Plugge C.M., Stams A.J.M. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 2004, 38:1368-1375.
    • (2004) Water Res. , vol.38 , pp. 1368-1375
    • de Bok, F.A.M.1    Plugge, C.M.2    Stams, A.J.M.3
  • 8
    • 34848864318 scopus 로고    scopus 로고
    • Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester
    • Gallert C., Winter J. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresour. Technol. 2008, 99:170-178.
    • (2008) Bioresour. Technol. , vol.99 , pp. 170-178
    • Gallert, C.1    Winter, J.2
  • 9
    • 34848885254 scopus 로고    scopus 로고
    • Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge
    • Hatamoto M., Imachi H., Fukayo S., Ohashi A., Harada H. Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2007, 57:2137-2142.
    • (2007) Int. J. Syst. Evol. Microbiol. , vol.57 , pp. 2137-2142
    • Hatamoto, M.1    Imachi, H.2    Fukayo, S.3    Ohashi, A.4    Harada, H.5
  • 10
    • 84862535140 scopus 로고    scopus 로고
    • Microbial interspecies electron transfer via electric currents through conductive minerals
    • Kato S., Hashimoto K., Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Nat. Acad. Sci. USA 2012, 109:10042-10046.
    • (2012) Proc. Nat. Acad. Sci. USA , vol.109 , pp. 10042-10046
    • Kato, S.1    Hashimoto, K.2    Watanabe, K.3
  • 11
    • 84880922468 scopus 로고    scopus 로고
    • Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen
    • Kimura Z., Okabe S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. ISME J. 2013, 7:1472-1482.
    • (2013) ISME J. , vol.7 , pp. 1472-1482
    • Kimura, Z.1    Okabe, S.2
  • 12
    • 84928266457 scopus 로고    scopus 로고
    • Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments
    • Li H., Chang J., Liu P., Fu L., Ding D., Lu Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 2015, 17:1533-1547.
    • (2015) Environ. Microbiol. , vol.17 , pp. 1533-1547
    • Li, H.1    Chang, J.2    Liu, P.3    Fu, L.4    Ding, D.5    Lu, Y.6
  • 14
    • 84924965830 scopus 로고    scopus 로고
    • Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
    • Liu F., Rotaru A., Shrestha P.M., Malvankar N.S., Nevin K.P., Lovley D.R. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 2015, 17:648-655.
    • (2015) Environ. Microbiol. , vol.17 , pp. 648-655
    • Liu, F.1    Rotaru, A.2    Shrestha, P.M.3    Malvankar, N.S.4    Nevin, K.P.5    Lovley, D.R.6
  • 15
    • 0032900278 scopus 로고    scopus 로고
    • Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii
    • Liu Y., Balkwill D.L., Aldrich H.C., Drake G.R., Boone D.R. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 1999, 49(Pt 2):545-556.
    • (1999) Int. J. Syst. Bacteriol. , vol.49 , pp. 545-556
    • Liu, Y.1    Balkwill, D.L.2    Aldrich, H.C.3    Drake, G.R.4    Boone, D.R.5
  • 16
    • 0000816703 scopus 로고
    • Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments
    • Lovley D.R., Phillips E.J. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 1987, 53:2636-2641.
    • (1987) Appl. Environ. Microbiol. , vol.53 , pp. 2636-2641
    • Lovley, D.R.1    Phillips, E.J.2
  • 19
    • 78649756861 scopus 로고    scopus 로고
    • Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms
    • Müller N., Worm P., Schink B., Stams A.J.M., Plugge C.M. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ. Microbiol. Rep. 2010, 2:489-499.
    • (2010) Environ. Microbiol. Rep. , vol.2 , pp. 489-499
    • Müller, N.1    Worm, P.2    Schink, B.3    Stams, A.J.M.4    Plugge, C.M.5
  • 21
    • 0035209721 scopus 로고    scopus 로고
    • Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel)
    • Nusslein B., Chin K.J., Eckert W., Conrad R. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ. Microbiol. 2001, 3:460-470.
    • (2001) Environ. Microbiol. , vol.3 , pp. 460-470
    • Nusslein, B.1    Chin, K.J.2    Eckert, W.3    Conrad, R.4
  • 22
    • 84890454863 scopus 로고    scopus 로고
    • A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    • Rotaru A., Shrestha P.M., Liu F., Shrestha M., Shrestha D., Embree M., Zengler K., Wardman C., Nevin K.P., Lovley D.R. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7:408-415.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 408-415
    • Rotaru, A.1    Shrestha, P.M.2    Liu, F.3    Shrestha, M.4    Shrestha, D.5    Embree, M.6    Zengler, K.7    Wardman, C.8    Nevin, K.P.9    Lovley, D.R.10
  • 23
    • 84938880111 scopus 로고    scopus 로고
    • Link between capacity for current production and syntrophic growth in Geobacter species
    • Rotaru A., Woodard T.L., Nevin K.P., Lovley D.R. Link between capacity for current production and syntrophic growth in Geobacter species. Front. Microbiol. 2015, 6.
    • (2015) Front. Microbiol. , vol.6
    • Rotaru, A.1    Woodard, T.L.2    Nevin, K.P.3    Lovley, D.R.4
  • 25
    • 17144466202 scopus 로고    scopus 로고
    • Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors
    • Schnurer A., Zellner G., Svensson B.H. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol. Ecol. 1999, 29:249-261.
    • (1999) FEMS Microbiol. Ecol. , vol.29 , pp. 249-261
    • Schnurer, A.1    Zellner, G.2    Svensson, B.H.3
  • 27
    • 33947314488 scopus 로고    scopus 로고
    • Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum
    • Sousa D.Z., Smidt H., Alves M.M., Stams A.J.M. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int. J. Syst. Evol. Microbiol. 2007, 57:609-615.
    • (2007) Int. J. Syst. Evol. Microbiol. , vol.57 , pp. 609-615
    • Sousa, D.Z.1    Smidt, H.2    Alves, M.M.3    Stams, A.J.M.4
  • 28
    • 67651202726 scopus 로고    scopus 로고
    • Electron transfer in syntrophic communities of anaerobic bacteria and archaea
    • Stams A.J.M., Plugge C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7:568-577.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 568-577
    • Stams, A.J.M.1    Plugge, C.M.2
  • 29
    • 84863448316 scopus 로고    scopus 로고
    • Role of syntrophic microbial communities in high-rate methanogenic bioreactors
    • Stams A.J.M., Sousa D.Z., Kleerebezem R., Plugge C.M. Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci. Technol. 2012, 66:352.
    • (2012) Water Sci. Technol. , vol.66 , pp. 352
    • Stams, A.J.M.1    Sousa, D.Z.2    Kleerebezem, R.3    Plugge, C.M.4
  • 30
    • 78649707496 scopus 로고    scopus 로고
    • Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
    • Summers Z.M., Fogarty H.E., Leang C., Franks A.E., Malvankar N.S., Lovley D.R. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 330:1413-1415.
    • (2010) Science , vol.330 , pp. 1413-1415
    • Summers, Z.M.1    Fogarty, H.E.2    Leang, C.3    Franks, A.E.4    Malvankar, N.S.5    Lovley, D.R.6
  • 31
    • 31144462864 scopus 로고    scopus 로고
    • Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production
    • Wang L., Zhou Q., Li F. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass Bioenergy 2006, 30:177-182.
    • (2006) Biomass Bioenergy , vol.30 , pp. 177-182
    • Wang, L.1    Zhou, Q.2    Li, F.3
  • 32
    • 2942674763 scopus 로고    scopus 로고
    • Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens
    • Zhang C. Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int. J. Syst. Evol. Microbiol. 2004, 54:969-973.
    • (2004) Int. J. Syst. Evol. Microbiol. , vol.54 , pp. 969-973
    • Zhang, C.1
  • 33
    • 84964355851 scopus 로고    scopus 로고
    • Expanding the diet for DIET: electron donors supporting direct interspecies electron transfer (DIET) in defined co-cultures
    • Wang L., Nevin K.P., Woodard T.L., Mu B., Lovley D.R. Expanding the diet for DIET: electron donors supporting direct interspecies electron transfer (DIET) in defined co-cultures. Front. Microbiol. 2016, 7:236. 10.3389/fmicb.2016.00236.
    • (2016) Front. Microbiol. , vol.7 , pp. 236
    • Wang, L.1    Nevin, K.P.2    Woodard, T.L.3    Mu, B.4    Lovley, D.R.5
  • 34
    • 84929328155 scopus 로고    scopus 로고
    • Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials
    • Zhao Z., Zhang Y., Woodard T.L., Nevin K.P., Lovley D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191:140-145.
    • (2015) Bioresour. Technol. , vol.191 , pp. 140-145
    • Zhao, Z.1    Zhang, Y.2    Woodard, T.L.3    Nevin, K.P.4    Lovley, D.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.