메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 1798-1804

A regularized linear dynamical system framework for multivariate time series analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DYNAMICAL SYSTEMS; IMAGE SEGMENTATION; LINEAR CONTROL SYSTEMS; MATRIX ALGEBRA; MAXIMUM PRINCIPLE;

EID: 84959913707     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (32)
  • 3
    • 80051660568 scopus 로고    scopus 로고
    • Estimation and dynamic updating of time-varying signals with sparse variations
    • IEEE
    • Asif, M. S.; Charles, A.; Romberg, J.; and Rozell, C. 2011. Estimation and dynamic updating of time-varying signals with sparse variations. In ICASSP, 3908-3911. IEEE.
    • (2011) ICASSP , pp. 3908-3911
    • Asif, M.S.1    Charles, A.2    Romberg, J.3    Rozell, C.4
  • 6
    • 0028974495 scopus 로고
    • Analysis of short time series: Correcting for autocorrelation
    • Bence, J. R. 1995. Analysis of short time series: correcting for autocorrelation. Ecology 628-639.
    • (1995) Ecology , pp. 628-639
    • Bence, J.R.1
  • 8
    • 77949418978 scopus 로고    scopus 로고
    • Methods for sparse signal recovery using kalman filtering with embedded pseudo-measurement norms and quasi-norms
    • Carmi, A.; Gurfil, P.; and Kanevsky, D. 2010. Methods for sparse signal recovery using kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Trans-actions on Signal Processing 58(4):2405-2409.
    • (2010) IEEE Trans-actions on Signal Processing , vol.58 , Issue.4 , pp. 2405-2409
    • Carmi, A.1    Gurfil, P.2    Kanevsky, D.3
  • 10
    • 85161977208 scopus 로고    scopus 로고
    • Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors
    • Chiuso, A., and Pillonetto, G. 2010. Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors. In Advances in Neural Information Processing Systems, 397-405.
    • (2010) Advances in Neural Information Processing Systems , pp. 397-405
    • Chiuso, A.1    Pillonetto, G.2
  • 12
    • 0042385066 scopus 로고    scopus 로고
    • Univariate versus multivariate time series forecasting: An application to international tourism demand
    • Du Preez, J., and Witt, S. F. 2003. Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting 19(3):435-451.
    • (2003) International Journal of Forecasting , vol.19 , Issue.3 , pp. 435-451
    • Du Preez, J.1    Witt, S.F.2
  • 13
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst, J.; Nau, G. J.; and Bar-Joseph, Z. 2005. Clustering short time series gene expression data. Bioinformatics 21(suppl I):il59-il68.
    • (2005) Bioinformatics , vol.21 , pp. il59-il68
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 15
    • 0003423085 scopus 로고    scopus 로고
    • Parameter estimation for linear dynamical systems. Technical report
    • University of Totronto
    • Ghahramani, Z., and Hinton, G. E. 1996. Parameter estimation for linear dynamical systems. Technical report, Technical Report CRG-TR-96-2, University of Totronto.
    • (1996) Technical Report CRG-TR-96-2
    • Ghahramani, Z.1    Hinton, G.E.2
  • 16
    • 78149476550 scopus 로고    scopus 로고
    • Sparse coding of linear dynamical systems with an application to dynamic texture recognition
    • IEEE
    • Ghanem, B., and Ahuja, N. 2010. Sparse coding of linear dynamical systems with an application to dynamic texture recognition. In 2010 20th International Conference on Pattern Recognition, 987-990. IEEE.
    • (2010) 2010 20th International Conference on Pattern Recognition , pp. 987-990
    • Ghanem, B.1    Ahuja, N.2
  • 19
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(l):35-45.
    • (1960) Journal of Basic Engineering , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1
  • 21
    • 2742545419 scopus 로고
    • A comparison of multivariate forecasting procedures for economic time series
    • Kling, J. L., and Bessler, D. A. 1985. A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting 1(1):5-24.
    • (1985) International Journal of Forecasting , vol.1 , Issue.1 , pp. 5-24
    • Kling, J.L.1    Bessler, D.A.2
  • 22
    • 84887316287 scopus 로고    scopus 로고
    • Clinical time series prediction with a hierarchical dynamical system
    • Springer
    • Liu, Z., and Hauskrecht, M. 2013. Clinical time series prediction with a hierarchical dynamical system. In Artificial Intelligence in Medicine. Springer. 227-237'.
    • (2013) Artificial Intelligence in Medicine , pp. 227-237
    • Liu, Z.1    Hauskrecht, M.2
  • 25
    • 0028393268 scopus 로고
    • Qualitative modelling of linear dynamical systems with quantized state measurements
    • Lunze, J. 1994. Qualitative modelling of linear dynamical systems with quantized state measurements, automatica 30(3):417-431.
    • (1994) Automatica , vol.30 , Issue.3 , pp. 417-431
    • Lunze, J.1
  • 26
    • 84880103760 scopus 로고    scopus 로고
    • Efficient block-coordinate descent algorithms for the group lasso
    • Qin, Z.; Scheinberg, K.; and Goldfarb, D. 2013. Efficient block-coordinate descent algorithms for the group lasso. Mathematical Programming Computation 5(2): 143-169.
    • (2013) Mathematical Programming Computation , vol.5 , Issue.2 , pp. 143-169
    • Qin, Z.1    Scheinberg, K.2    Goldfarb, D.3
  • 29
    • 84891524089 scopus 로고    scopus 로고
    • Penalized estimation in high-dimensional hidden markov models with state-specific graphical models
    • Städler, N., and Mukherjee, S. 2013. Penalized estimation in high-dimensional hidden markov models with state-specific graphical models. The Annals of Applied Statistics 7(4):2157-2179.
    • (2013) The Annals of Applied Statistics , vol.7 , Issue.4 , pp. 2157-2179
    • Städler, N.1    Mukherjee, S.2
  • 31
    • 84924372097 scopus 로고    scopus 로고
    • Subspace identifi-cation for linear systems: Theory, implementation
    • Van Overschee, P., and De Moor, B. 1996. Subspace identifi-cation for linear systems: Theory, implementation. Methods.
    • (1996) Methods
    • Van Overschee, P.1    De Moor, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.