메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 398-406

Automatic construction and ranking of topical keyphrases on collections of short documents

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC CONSTRUCTION; DOCUMENT COLLECTION; GENERATING MODELS; KEY-PHRASE; KEYPHRASE EXTRACTION; REAL-WORLD; TOPIC MODELING;

EID: 84959911781     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973440.46     Document Type: Conference Paper
Times cited : (52)

References (23)
  • 1
    • 0002785404 scopus 로고    scopus 로고
    • Using noun phrase heads to extract document keyphrases
    • K. Barker and N. Cornacchia. Using noun phrase heads to extract document keyphrases. In Canadian Al, 2000.
    • (2000) Canadian Al
    • Barker, K.1    Cornacchia, N.2
  • 4
    • 80053452684 scopus 로고    scopus 로고
    • Sparse additive generative models of text
    • J. Eisenstein, A. Ahmed, and E. P. Xing. Sparse additive generative models of text. In ICML, 2011.
    • (2011) ICML
    • Eisenstein, J.1    Ahmed, A.2    Xing, E.P.3
  • 5
    • 77954591878 scopus 로고    scopus 로고
    • Extracting key terms from noisy and multitheme documents
    • M. Grineva, M. Grinev, and D. Lizorkin. Extracting key terms from noisy and multitheme documents. In WWW, 2009.
    • (2009) WWW
    • Grineva, M.1    Grinev, M.2    Lizorkin, D.3
  • 6
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattem tree approach
    • Jan.
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattem tree approach. Data Min. Knowl. Discov., 8(1):53-87, Jan. 2004.
    • (2004) Data Min. Knowl. Discov. , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 7
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Jan.
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn., 42(1-2):177-196, Jan. 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 8
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of ir techniques
    • Oct.
    • K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, Oct. 2002.
    • (2002) ACM Trans. Inf. Syst. , vol.20 , Issue.4 , pp. 422-446
    • Jarvelin, K.1    Kekalainen, J.2
  • 9
    • 84878606098 scopus 로고    scopus 로고
    • Enriching text representation with frequent pattern mining for probabilistic topic modeling
    • H. D. Kim, D. H. Park, Y. Lu, and C. Zhai. Enriching text representation with frequent pattern mining for probabilistic topic modeling. Proc. Am. Soc. for Inf. Sci. and Tech., 49(1):1-10, 2012.
    • (2012) Proc. Am. Soc. for Inf. Sci. and Tech. , vol.49 , Issue.1 , pp. 1-10
    • Kim, H.D.1    Park, D.H.2    Lu, Y.3    Zhai, C.4
  • 10
    • 84874480358 scopus 로고    scopus 로고
    • A phrase-discovering topic model using hierarchical pitman-yor processes
    • R. V. Lindsey, W. P. Headden, III, and M. J. Stipicevic. A phrase-discovering topic model using hierarchical pitman-yor processes. In EMNLP-CoNLL'12, 2012.
    • (2012) EMNLP-CoNLL'12
    • Lindsey, R.V.1    Headden, W.P.2    Stipicevic, M.J.3
  • 11
    • 80053269550 scopus 로고    scopus 로고
    • Automatic keyphrase extraction via topic decomposition
    • Z. Liu, W. Huang, Y. Zheng, and M. Sun. Automatic keyphrase extraction via topic decomposition. In EMNLP, 2010.
    • (2010) EMNLP
    • Liu, Z.1    Huang, W.2    Zheng, Y.3    Sun, M.4
  • 12
    • 77956054799 scopus 로고    scopus 로고
    • Clustering to find exemplar terms for keyphrase extraction
    • Z. Liu, P. Li, Y. Zheng, and M. Sun. Clustering to find exemplar terms for keyphrase extraction. In EMNLP, 2009.
    • (2009) EMNLP
    • Liu, Z.1    Li, P.2    Zheng, Y.3    Sun, M.4
  • 14
    • 36849026729 scopus 로고    scopus 로고
    • Automatic labeling of multinomial topic models
    • Q. Mei, X. Shen, and C. Zhai. Automatic labeling of multinomial topic models. In KDD, 2007.
    • (2007) KDD
    • Mei, Q.1    Shen, X.2    Zhai, C.3
  • 15
    • 85114317854 scopus 로고    scopus 로고
    • Textrank: Bringing order into texts
    • R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In EMNLP, 2004.
    • (2004) EMNLP
    • Mihalcea, R.1    Tarau, P.2
  • 17
    • 77956217643 scopus 로고    scopus 로고
    • Topic models with power-law using pitman-yor process
    • I. Sato and H. Nakagawa. Topic models with power-law using pitman-yor process. In KDD, 2010.
    • (2010) KDD
    • Sato, I.1    Nakagawa, H.2
  • 19
    • 21844478478 scopus 로고    scopus 로고
    • Learning algorithms for keyphrase extraction
    • May
    • P. D. Turney. Learning algorithms for keyphrase extraction. Inf. Retr., 2(4):303-336, May 2000.
    • (2000) Inf. Retr. , vol.2 , Issue.4 , pp. 303-336
    • Turney, P.D.1
  • 20
    • 33749245495 scopus 로고    scopus 로고
    • Topic modeling: Beyond bag-of-words
    • H. M. Wallach. Topic modeling: beyond bag-of-words. In ICML, 2006.
    • (2006) ICML
    • Wallach, H.M.1
  • 21
    • 49749087162 scopus 로고    scopus 로고
    • Topical n-grams: Phrase and topic discovery, with an application to information retrieval
    • X. Wang, A. McCallum, and X. Wei. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. In ICDM, 2007.
    • (2007) ICDM
    • Wang, X.1    McCallum, A.2    Wei, X.3
  • 22
    • 84898779066 scopus 로고    scopus 로고
    • Learning topics in short texts by non-negative matrix factorization on term correlation matrix
    • X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang. Learning topics in short texts by non-negative matrix factorization on term correlation matrix. In SDM, 2013.
    • (2013) SDM
    • Yan, X.1    Guo, J.2    Liu, S.3    Cheng, X.4    Wang, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.