메뉴 건너뛰기




Volumn 353, Issue 7, 2016, Pages 1518-1526

The recursive least squares identification algorithm for a class of Wiener nonlinear systems

Author keywords

[No Author keywords available]

Indexed keywords

LINEAR CONTROL SYSTEMS; NONLINEAR SYSTEMS;

EID: 84959564700     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2016.02.013     Document Type: Article
Times cited : (115)

References (40)
  • 1
    • 77951141155 scopus 로고    scopus 로고
    • Kalman filter based identification for systems with randomly missing measurements in a network environment
    • Y. Shi, and H. Fang Kalman filter based identification for systems with randomly missing measurements in a network environment Int. J. Control 83 3 2010 538 551
    • (2010) Int. J. Control , vol.83 , Issue.3 , pp. 538-551
    • Shi, Y.1    Fang, H.2
  • 2
    • 67949088087 scopus 로고    scopus 로고
    • Output feedback stabilization of networked control systems with random delays modeled by Markov chains
    • Y. Shi, and B. Yu Output feedback stabilization of networked control systems with random delays modeled by Markov chains IEEE Trans. Autom. Control 54 7 2009 1668 1674
    • (2009) IEEE Trans. Autom. Control , vol.54 , Issue.7 , pp. 1668-1674
    • Shi, Y.1    Yu, B.2
  • 3
    • 79953175193 scopus 로고    scopus 로고
    • Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links
    • Y. Shi, and B. Yu Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links Automatica 47 4 2011 754 760
    • (2011) Automatica , vol.47 , Issue.4 , pp. 754-760
    • Shi, Y.1    Yu, B.2
  • 6
    • 84887321099 scopus 로고    scopus 로고
    • Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle
    • P.P. Hu, F. Ding, and J. Sheng Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle J. Frankl. Inst. - Eng. Appl. Math. 350 10 2013 3248 3259
    • (2013) J. Frankl. Inst. - Eng. Appl. Math. , vol.350 , Issue.10 , pp. 3248-3259
    • Hu, P.P.1    Ding, F.2    Sheng, J.3
  • 7
    • 80051741326 scopus 로고    scopus 로고
    • Stabilization of networked control systems with random delays
    • X.L. Luan, P. Shi, and F. Liu Stabilization of networked control systems with random delays IEEE Trans. Ind. Electron. 58 9 2011 4323 4330
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , Issue.9 , pp. 4323-4330
    • Luan, X.L.1    Shi, P.2    Liu, F.3
  • 8
    • 84878335942 scopus 로고    scopus 로고
    • H-infinity control for discrete-time Markov jump systems with uncertain transition probabilities
    • X.L. Luan, S.Y. Zhao, and F. Liu H-infinity control for discrete-time Markov jump systems with uncertain transition probabilities IEEE Trans. Autom. Control 58 6 2013 1566 1572
    • (2013) IEEE Trans. Autom. Control , vol.58 , Issue.6 , pp. 1566-1572
    • Luan, X.L.1    Zhao, S.Y.2    Liu, F.3
  • 9
    • 84863169460 scopus 로고    scopus 로고
    • H-infinity filtering for discrete-time systems with stochastic incomplete measurement and mixed delays
    • P. Shi, X.L. Luan, and F. Liu H-infinity filtering for discrete-time systems with stochastic incomplete measurement and mixed delays IEEE Trans. Ind. Electron. 59 6 2012 2732 2739
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , Issue.6 , pp. 2732-2739
    • Shi, P.1    Luan, X.L.2    Liu, F.3
  • 10
    • 84979608694 scopus 로고    scopus 로고
    • Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition
    • F. Ding, X.H. Wang, Q.J. Chen, and Y.S. Xiao Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition Circuits Syst. Signal Process. 35 2016 10.1007/s00034-015-0190-6
    • (2016) Circuits Syst. Signal Process. , vol.35
    • Ding, F.1    Wang, X.H.2    Chen, Q.J.3    Xiao, Y.S.4
  • 11
    • 84957031722 scopus 로고    scopus 로고
    • Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models
    • D.Q. Wang Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models Appl. Math. Lett. 57 2016 13 19
    • (2016) Appl. Math. Lett. , vol.57 , pp. 13-19
    • Wang, D.Q.1
  • 12
    • 84984985623 scopus 로고    scopus 로고
    • Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity
    • H. Li, Y. Gao, P. Shi, and H.K. Lam Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity IEEE Trans. Autom. Control 2016 10.1109/TAC.2015.2503566
    • (2016) IEEE Trans. Autom. Control
    • Li, H.1    Gao, Y.2    Shi, P.3    Lam, H.K.4
  • 13
    • 84951851831 scopus 로고    scopus 로고
    • Observer-based adaptive sliding mode control of nonlinear Markovian jump systems
    • H. Li, P. Shi, D. Yao, and L. Wu Observer-based adaptive sliding mode control of nonlinear Markovian jump systems Automatica 64 2016 133 142
    • (2016) Automatica , vol.64 , pp. 133-142
    • Li, H.1    Shi, P.2    Yao, D.3    Wu, L.4
  • 14
    • 85033399534 scopus 로고    scopus 로고
    • Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique
    • Y.J. Wang, and F. Ding Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique IMA J. Math. Control Inf. 2016 10.1093/imamci/dnv067
    • (2016) IMA J. Math. Control Inf.
    • Wang, Y.J.1    Ding, F.2
  • 15
    • 84866035663 scopus 로고    scopus 로고
    • Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration
    • J.H. Li Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration Appl. Math. Lett. 26 1 2013 91 96
    • (2013) Appl. Math. Lett. , vol.26 , Issue.1 , pp. 91-96
    • Li, J.H.1
  • 16
    • 50649124688 scopus 로고    scopus 로고
    • Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model
    • G. Shafiee, M.M. Arefi, M.R. Jahed-Motlagh, and A.A. Jalali Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model Chem. Eng. J. 143 1-3 2008 282 292
    • (2008) Chem. Eng. J. , vol.143 , Issue.1-3 , pp. 282-292
    • Shafiee, G.1    Arefi, M.M.2    Jahed-Motlagh, M.R.3    Jalali, A.A.4
  • 17
    • 78751575535 scopus 로고    scopus 로고
    • Multiple model LPV approach to nonlinear process identification with em algorithm
    • X. Jin, B. Huang, and D.S. Shook Multiple model LPV approach to nonlinear process identification with EM algorithm J. Process Control 21 1 2011 182 193
    • (2011) J. Process Control , vol.21 , Issue.1 , pp. 182-193
    • Jin, X.1    Huang, B.2    Shook, D.S.3
  • 18
    • 83655193041 scopus 로고    scopus 로고
    • Nonlinear identification of a minimal neuromuscular blockade model in anesthesia
    • M.M. da Silva, T. Wigren, and T. Mendon Nonlinear identification of a minimal neuromuscular blockade model in anesthesia IEEE Trans. Control Syst. Technol. 20 1 2012 181 188
    • (2012) IEEE Trans. Control Syst. Technol. , vol.20 , Issue.1 , pp. 181-188
    • Da Silva, M.M.1    Wigren, T.2    Mendon, T.3
  • 19
    • 80052704398 scopus 로고    scopus 로고
    • MINLIP for the identification of monotone Wiener systems
    • K. Pelckmans MINLIP for the identification of monotone Wiener systems Automatica 47 10 2011 2298 2305
    • (2011) Automatica , vol.47 , Issue.10 , pp. 2298-2305
    • Pelckmans, K.1
  • 20
    • 84872620255 scopus 로고    scopus 로고
    • An iterative numerical algorithm for modeling a class of Wiener nonlinear systems
    • W.L. Xiong, J.X. Ma, and R.F. Ding An iterative numerical algorithm for modeling a class of Wiener nonlinear systems Appl. Math. Lett. 26 4 2013 487 493
    • (2013) Appl. Math. Lett. , vol.26 , Issue.4 , pp. 487-493
    • Xiong, W.L.1    Ma, J.X.2    Ding, R.F.3
  • 21
    • 33845215508 scopus 로고    scopus 로고
    • Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities
    • J. Vörös Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities Syst. Control Lett. 56 2 2007 99 105
    • (2007) Syst. Control Lett. , vol.56 , Issue.2 , pp. 99-105
    • Vörös, J.1
  • 22
    • 55249097118 scopus 로고    scopus 로고
    • Maximum likelihood identification of Wiener models
    • A. Hagenblad, L. Ljung, and A. Wills Maximum likelihood identification of Wiener models Automatica 44 11 2008 2697 2705
    • (2008) Automatica , vol.44 , Issue.11 , pp. 2697-2705
    • Hagenblad, A.1    Ljung, L.2    Wills, A.3
  • 23
    • 84873732717 scopus 로고    scopus 로고
    • An inverse coefficient problem related to elastic-plastic torsion of a circular cross-section bar
    • A. Hasanov, and V.G. Romanov An inverse coefficient problem related to elastic-plastic torsion of a circular cross-section bar Appl. Math. Lett. 26 5 2013 533 538
    • (2013) Appl. Math. Lett. , vol.26 , Issue.5 , pp. 533-538
    • Hasanov, A.1    Romanov, V.G.2
  • 24
    • 0036604581 scopus 로고    scopus 로고
    • A blind approach to the Hammerstein-Wiener model identification
    • E.W. Bai A blind approach to the Hammerstein-Wiener model identification Automatica 38 6 2002 967 979
    • (2002) Automatica , vol.38 , Issue.6 , pp. 967-979
    • Bai, E.W.1
  • 25
    • 0242337436 scopus 로고    scopus 로고
    • Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities
    • S.L. Lacy, and D.S. Berntein Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities Int J. Control 76 15 2003 1500 1507
    • (2003) Int J. Control , vol.76 , Issue.15 , pp. 1500-1507
    • Lacy, S.L.1    Berntein, D.S.2
  • 27
    • 84901022282 scopus 로고    scopus 로고
    • An efficient way of solving inverse problem using nonlinear Wiener filter and its application to pattern recognition
    • M.S. Revathy, and N.N. Singh An efficient way of solving inverse problem using nonlinear Wiener filter and its application to pattern recognition Procedia Eng. 38 2012 708 717
    • (2012) Procedia Eng. , vol.38 , pp. 708-717
    • Revathy, M.S.1    Singh, N.N.2
  • 28
    • 49449108600 scopus 로고    scopus 로고
    • Invertibility of the Gabor frame operator on the Wiener amalgam space
    • I.A. Krishtal, and K.A. Okoudjou Invertibility of the Gabor frame operator on the Wiener amalgam space J. Approx. Theory 153 2 2008 212 224
    • (2008) J. Approx. Theory , vol.153 , Issue.2 , pp. 212-224
    • Krishtal, I.A.1    Okoudjou, K.A.2
  • 29
    • 84897710253 scopus 로고    scopus 로고
    • Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises
    • Y.B. Hu, B.L. Liu, Q. Zhou, and C. Yang Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises Circuits Syst. Signal Process. 33 2 2014 655 664
    • (2014) Circuits Syst. Signal Process. , vol.33 , Issue.2 , pp. 655-664
    • Hu, Y.B.1    Liu, B.L.2    Zhou, Q.3    Yang, C.4
  • 30
    • 84907528812 scopus 로고    scopus 로고
    • A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems
    • Y.B. Hu, B.L. Liu, and Q. Zhou A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems Appl. Math. Comput. 247 2014 218 224
    • (2014) Appl. Math. Comput. , vol.247 , pp. 218-224
    • Hu, Y.B.1    Liu, B.L.2    Zhou, Q.3
  • 31
    • 84925478712 scopus 로고    scopus 로고
    • New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems
    • Y. Ji, X.M. Liu, and et al. New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems Nonlinear Dyn. 79 1 2015 1 9
    • (2015) Nonlinear Dyn. , vol.79 , Issue.1 , pp. 1-9
    • Ji, Y.1    Liu, X.M.2
  • 32
    • 84925478711 scopus 로고    scopus 로고
    • Unified synchronization criteria for hybrid switching-impulsive dynamical networks
    • Y. Ji, and X.M. Liu Unified synchronization criteria for hybrid switching-impulsive dynamical networks Circuits Syst. Signal Process. 34 5 2015 1499 1517
    • (2015) Circuits Syst. Signal Process. , vol.34 , Issue.5 , pp. 1499-1517
    • Ji, Y.1    Liu, X.M.2
  • 33
    • 84872617586 scopus 로고    scopus 로고
    • Auxiliary model based parameter estimation for dual-rate output error systems with colored noise
    • J. Ding, C.X. Fan, and J.X. Lin Auxiliary model based parameter estimation for dual-rate output error systems with colored noise Appl. Math. Modell. 37 6 2013 4051 4058
    • (2013) Appl. Math. Modell. , vol.37 , Issue.6 , pp. 4051-4058
    • Ding, J.1    Fan, C.X.2    Lin, J.X.3
  • 34
    • 84957044111 scopus 로고    scopus 로고
    • An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering
    • F. Ding, X.M. Liu, and Y. Gu An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering J. Frankl. Inst. 353 2 2016 398 408
    • (2016) J. Frankl. Inst. , vol.353 , Issue.2 , pp. 398-408
    • Ding, F.1    Liu, X.M.2    Gu, Y.3
  • 35
    • 84900556855 scopus 로고    scopus 로고
    • Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique
    • J. Ding, and J.X. Lin Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique Circuits Syst. Signal Process. 33 5 2014 1439 1449
    • (2014) Circuits Syst. Signal Process. , vol.33 , Issue.5 , pp. 1439-1449
    • Ding, J.1    Lin, J.X.2
  • 36
    • 84949293739 scopus 로고    scopus 로고
    • Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems
    • X.H. Wang, and F. Ding Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems Int. J. Adapt. Control Signal Process 30 2016 10.1002/acs.2642
    • (2016) Int. J. Adapt. Control Signal Process , vol.30
    • Wang, X.H.1    Ding, F.2
  • 37
    • 84922470043 scopus 로고    scopus 로고
    • Recursive least squares parameter identification for systems with colored noise using the filtering technique and the auxiliary model
    • F. Ding, Y.J. Wang, and J. Ding Recursive least squares parameter identification for systems with colored noise using the filtering technique and the auxiliary model Digital Signal Process 37 2015 100 108
    • (2015) Digital Signal Process , vol.37 , pp. 100-108
    • Ding, F.1    Wang, Y.J.2    Ding, J.3
  • 38
    • 84971281781 scopus 로고    scopus 로고
    • Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique
    • X.H. Wang, and F. Ding Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique Math. Comput. Model. Dyn. Syst. 22 2016 http://dx.doi.org/10.1080/13873954.2016.1142455
    • (2016) Math. Comput. Model. Dyn. Syst. , vol.22
    • Wang, X.H.1    Ding, F.2
  • 39
    • 84961186249 scopus 로고    scopus 로고
    • Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering
    • Y.J. Wang, and F. Ding Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering Nonlinear Dyn 2016 10.1007/s11071-015-2548-5
    • (2016) Nonlinear Dyn
    • Wang, Y.J.1    Ding, F.2
  • 40
    • 84961660335 scopus 로고    scopus 로고
    • Recursive parameter estimation algorithms and convergence for a class of nonlinear systems with colored noise
    • Y.J. Wang, and F. Ding Recursive parameter estimation algorithms and convergence for a class of nonlinear systems with colored noise Circuits Syst. Signal Process 35 2016 10.1007/s00034-015-0210-6
    • (2016) Circuits Syst. Signal Process , vol.35
    • Wang, Y.J.1    Ding, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.