메뉴 건너뛰기




Volumn 43, Issue , 2016, Pages 73-86

Ensemble classification based on supervised clustering for credit scoring

Author keywords

Credit scoring; Diversity of base classifiers; Ensemble classification; Random sampling; Supervised clustering; Weighted voting

Indexed keywords

RISK ASSESSMENT;

EID: 84959467883     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.02.022     Document Type: Article
Times cited : (146)

References (60)
  • 1
    • 0040453788 scopus 로고    scopus 로고
    • Statistical classification methods in consumer credit scoring: A review
    • D.J. Hand, and W.E. Henley Statistical classification methods in consumer credit scoring: A review J. R. Stat. Soc. Ser. A (Stat. Soc.) 160 1997 523 541
    • (1997) J. R. Stat. Soc. Ser. A (Stat. Soc.) , vol.160 , pp. 523-541
    • Hand, D.J.1    Henley, W.E.2
  • 3
    • 34447107877 scopus 로고    scopus 로고
    • Adaptive credit scoring with kernel learning methods
    • Y. Yang Adaptive credit scoring with kernel learning methods Eur. J. Oper. Res. 183 2007 1521 1536
    • (2007) Eur. J. Oper. Res. , vol.183 , pp. 1521-1536
    • Yang, Y.1
  • 4
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • G. Wang, J. Ma, L. Huang, and K. Xu Two credit scoring models based on dual strategy ensemble trees Knowl. Based Syst. 26 2012 61 68
    • (2012) Knowl. Based Syst. , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 5
    • 0001106153 scopus 로고
    • Problems in applying discriminant in credit scoring models
    • R.A. Eisenbeis Problems in applying discriminant in credit scoring models J. Bank. Financ. 2 1978 205 219
    • (1978) J. Bank. Financ. , vol.2 , pp. 205-219
    • Eisenbeis, R.A.1
  • 7
    • 1542603058 scopus 로고    scopus 로고
    • A k-NN classifier for assessing consumer credit risk
    • W.E. Henley, and D.J. Hand A k-NN classifier for assessing consumer credit risk Statistician 65 1996 77 95
    • (1996) Statistician , vol.65 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 8
    • 24144479105 scopus 로고    scopus 로고
    • Data mining via multiple criteria linear programming: Applications in credit card portfolio management
    • Y. Shi, Y. Peng, W. Xu, and X. Tang Data mining via multiple criteria linear programming: Applications in credit card portfolio management Int. J. Inf. Technol. Decis. Mak. 1 2002 131 151
    • (2002) Int. J. Inf. Technol. Decis. Mak. , vol.1 , pp. 131-151
    • Shi, Y.1    Peng, Y.2    Xu, W.3    Tang, X.4
  • 9
    • 38649085309 scopus 로고    scopus 로고
    • A multi-criteria convex quadratic programming model for credit data analysis
    • Y. Peng, G. Kou, Y. Shi, and Z.X. Chen A multi-criteria convex quadratic programming model for credit data analysis Decis. Support Syst. 44 4 2008 1016 1030
    • (2008) Decis. Support Syst. , vol.44 , Issue.4 , pp. 1016-1030
    • Peng, Y.1    Kou, G.2    Shi, Y.3    Chen, Z.X.4
  • 10
    • 17844382437 scopus 로고    scopus 로고
    • A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
    • T. Lee, C. Chiu, C. Lu, and I. Chen A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines Expert Syst. Appl. 28 2005 743 752
    • (2005) Expert Syst. Appl. , vol.28 , pp. 743-752
    • Lee, T.1    Chiu, C.2    Lu, C.3    Chen, I.4
  • 11
    • 84904965838 scopus 로고    scopus 로고
    • A novel model for credit card fraud detection using artificial immune systems
    • N.S. Halvaiee, and M.K. Akbari A novel model for credit card fraud detection using artificial immune systems Appl. Soft Comput. 24 2011 40 49
    • (2011) Appl. Soft Comput. , vol.24 , pp. 40-49
    • Halvaiee, N.S.1    Akbari, M.K.2
  • 12
    • 84655166588 scopus 로고    scopus 로고
    • An artificial immune classifier for credit scoring analysis
    • S.Y. Chang, and T.Y. Yeh An artificial immune classifier for credit scoring analysis Appl. Soft Comput. 12 2012 611 618
    • (2012) Appl. Soft Comput. , vol.12 , pp. 611-618
    • Chang, S.Y.1    Yeh, T.Y.2
  • 13
    • 16244405300 scopus 로고    scopus 로고
    • Building credit scoring models using genetic programming
    • C. Ong, J. Huang, and G. Tzeng Building credit scoring models using genetic programming Expert Syst. Appl. 29 2005 41 47
    • (2005) Expert Syst. Appl. , vol.29 , pp. 41-47
    • Ong, C.1    Huang, J.2    Tzeng, G.3
  • 14
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H.C. Chen, C.J. Hsu, W.H. Chen, and S.S. Wu Credit rating analysis with support vector machines and neural networks: A market comparative study Decis. Support Syst. 37 4 2004 543 558
    • (2004) Decis. Support Syst. , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.C.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.S.5
  • 15
    • 60249096424 scopus 로고    scopus 로고
    • Prediction model building with clustering-launched classification and support vector machines in credit scoring
    • S.T. Luo, B.W. Cheng, and C.H. Hsieh Prediction model building with clustering-launched classification and support vector machines in credit scoring Expert Syst. Appl. 36 2009 7562 7566
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7562-7566
    • Luo, S.T.1    Cheng, B.W.2    Hsieh, C.H.3
  • 17
    • 84910615991 scopus 로고    scopus 로고
    • Classification restricted Boltzmann machine for comprehensible credit scoring model
    • J.M. Tomczak, and M. Zieba Classification restricted Boltzmann machine for comprehensible credit scoring model Expert Syst. Appl. 42 2015 1789 1796
    • (2015) Expert Syst. Appl. , vol.42 , pp. 1789-1796
    • Tomczak, J.M.1    Zieba, M.2
  • 18
    • 84907481786 scopus 로고    scopus 로고
    • Credit scoring using the clustered support vector machine
    • T. Harris Credit scoring using the clustered support vector machine Expert Syst. Appl. 42 2015 741 750
    • (2015) Expert Syst. Appl. , vol.42 , pp. 741-750
    • Harris, T.1
  • 19
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Inf. Fusion 6 2005 83 98
    • (2005) Inf. Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 20
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • A.H.R. Ko, R. Sabourin, and A.S. Britto Jr. From dynamic classifier selection to dynamic ensemble selection Pattern Recognit. 41 2008 1718 1731
    • (2008) Pattern Recognit. , vol.41 , pp. 1718-1731
    • Ko, A.H.R.1    Sabourin, R.2    Britto, A.S.3
  • 21
    • 33750432129 scopus 로고    scopus 로고
    • Cluster-based dynamic scoring model
    • M.K. Lim, and S.Y. Sohn Cluster-based dynamic scoring model Expert Syst. Appl. 32 2007 427 431
    • (2007) Expert Syst. Appl. , vol.32 , pp. 427-431
    • Lim, M.K.1    Sohn, S.Y.2
  • 22
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study on six classifier fusion strategies
    • L. Kuncheva A theoretical study on six classifier fusion strategies IEEE Trans. Pattern Anal. Mach. Intell. 24 2002 281 286
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 281-286
    • Kuncheva, L.1
  • 23
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva, and C. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Mach. Learn. 51 2003 181 207
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 24
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorization
    • G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: A survey and categorization Inf. Fusion 6 2005 5 20
    • (2005) Inf. Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 25
    • 61449099344 scopus 로고    scopus 로고
    • Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity
    • R. Pasti, and L.N. de Castro Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity Inf. Sci. 179 2009 1441 1453
    • (2009) Inf. Sci. , vol.179 , pp. 1441-1453
    • Pasti, R.1    De Castro, L.N.2
  • 26
    • 84922842596 scopus 로고    scopus 로고
    • An ensemble approach of dual base learners for multi-class classification problem
    • M.P. Sesmero, J.M. Alonso-Weber, G. Gutierrez, A. Ledezma, and A. Sanchis An ensemble approach of dual base learners for multi-class classification problem Inf. Fusion 24 2015 122 136
    • (2015) Inf. Fusion , vol.24 , pp. 122-136
    • Sesmero, M.P.1    Alonso-Weber, J.M.2    Gutierrez, G.3    Ledezma, A.4    Sanchis, A.5
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Brieman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Brieman, L.1
  • 28
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 29
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee Boosting the margin: A new explanation for the effectiveness of voting methods Ann. Stat. 26 1998 1651 1686
    • (1998) Ann. Stat. , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 30
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Wozniak, M. Grana, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Wozniak, M.1    Grana, M.2    Corchado, E.3
  • 31
    • 84904400137 scopus 로고    scopus 로고
    • Dynamic selection of classifiers-a comprehensive review
    • A.S. Britto Jr., R. Sabourin, and L.E.S. Oliveira Dynamic selection of classifiers-a comprehensive review Pattern Recognit. 47 2014 3665 3680
    • (2014) Pattern Recognit. , vol.47 , pp. 3665-3680
    • Britto, A.S.1    Sabourin, R.2    Oliveira, L.E.S.3
  • 32
    • 0035457787 scopus 로고    scopus 로고
    • Multiple classifier combination by clustering and selection
    • R. Liu, and B. Yuan Multiple classifier combination by clustering and selection Inf. Fusion 2 2001 163 168
    • (2001) Inf. Fusion , vol.2 , pp. 163-168
    • Liu, R.1    Yuan, B.2
  • 33
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta, and B. Gabrys Classifier selection for majority voting Inf. Fusion 6 2005 63 81
    • (2005) Inf. Fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 34
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • J. Xiao, C. He, X. Jiang, and D. Liu A dynamic classifier ensemble selection approach for noise data Inf. Sci. 180 2010 3402 3421
    • (2010) Inf. Sci. , vol.180 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4
  • 35
    • 79958833224 scopus 로고    scopus 로고
    • A probabilistic model of classifier competence for dynamic ensemble selection
    • T. Woloszynski, and M. Kurzynski A probabilistic model of classifier competence for dynamic ensemble selection Pattern Recognit. 44 2011 2656 2668
    • (2011) Pattern Recognit. , vol.44 , pp. 2656-2668
    • Woloszynski, T.1    Kurzynski, M.2
  • 36
    • 84867873453 scopus 로고    scopus 로고
    • Dynamic classifier ensemble using classification confidence
    • L. Li, B. Zou, Q. Hu, X. Wu, and D. Yu Dynamic classifier ensemble using classification confidence Neurocomputing 99 2013 581 591
    • (2013) Neurocomputing , vol.99 , pp. 581-591
    • Li, L.1    Zou, B.2    Hu, Q.3    Wu, X.4    Yu, D.5
  • 37
    • 84919706710 scopus 로고    scopus 로고
    • A new reverse reduce-error ensemble pruning algorithm
    • Q. Dai, T. Zhang, and N. Liu A new reverse reduce-error ensemble pruning algorithm Appl. Soft Comput. 28 2015 237 249
    • (2015) Appl. Soft Comput. , vol.28 , pp. 237-249
    • Dai, Q.1    Zhang, T.2    Liu, N.3
  • 38
    • 84924043420 scopus 로고    scopus 로고
    • Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms
    • I. Mendialdua, A. Arruti, E. Jauregi, E. Lazkano, and B. Sierra Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms Neurocomputing 157 2015 46 60
    • (2015) Neurocomputing , vol.157 , pp. 46-60
    • Mendialdua, I.1    Arruti, A.2    Jauregi, E.3    Lazkano, E.4    Sierra, B.5
  • 40
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • S. Finlay Multiple classifier architectures and their application to credit risk assessment Eur. J. Oper. Res. 210 2011 368 378
    • (2011) Eur. J. Oper. Res. , vol.210 , pp. 368-378
    • Finlay, S.1
  • 41
    • 80255137251 scopus 로고    scopus 로고
    • Dynamic classifier ensemble model for customer classification with imbalanced class distribution
    • J. Xiao, L. Xie, C. He, and X. Jiang Dynamic classifier ensemble model for customer classification with imbalanced class distribution Expert Syst. Appl. 39 2012 3668 3675
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3668-3675
    • Xiao, J.1    Xie, L.2    He, C.3    Jiang, X.4
  • 42
    • 84878300417 scopus 로고    scopus 로고
    • Consumer credit risk: Individual probability estimates using machine learning
    • J. Kruppa, A. Schwarz, G. Arminger, and A. Ziegler Consumer credit risk: Individual probability estimates using machine learning Expert Syst. Appl. 40 2013 5125 5131
    • (2013) Expert Syst. Appl. , vol.40 , pp. 5125-5131
    • Kruppa, J.1    Schwarz, A.2    Arminger, G.3    Ziegler, A.4
  • 43
    • 84908455123 scopus 로고    scopus 로고
    • A comparative study of classifier ensembles for bankruptcy prediction
    • C.F. Tsai, Y.F. Hsu, and D.C. Yen A comparative study of classifier ensembles for bankruptcy prediction Appl. Soft Comput. 24 2014 977 984
    • (2014) Appl. Soft Comput. , vol.24 , pp. 977-984
    • Tsai, C.F.1    Hsu, Y.F.2    Yen, D.C.3
  • 44
    • 0036230457 scopus 로고    scopus 로고
    • The new k-windows algorithm for improving the k-mean clustering algorithm
    • M.N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides The new k-windows algorithm for improving the k-mean clustering algorithm J. Complex. 18 2002 375 391
    • (2002) J. Complex. , vol.18 , pp. 375-391
    • Vrahatis, M.N.1    Boutsinas, B.2    Alevizos, P.3    Pavlides, G.4
  • 45
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets J. Cybern. 3 1974 58 73
    • (1974) J. Cybern. , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 46
    • 77957870107 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • B. Rezaee A cluster validity index for fuzzy clustering Fuzzy Sets Syst. 161 2010 3014 3025
    • (2010) Fuzzy Sets Syst. , vol.161 , pp. 3014-3025
    • Rezaee, B.1
  • 47
    • 36549068285 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • Y. Zhang, W. Wang, X. Zhang, and Y. Li A cluster validity index for fuzzy clustering Inf. Sci. 178 2008 1205 1218
    • (2008) Inf. Sci. , vol.178 , pp. 1205-1218
    • Zhang, Y.1    Wang, W.2    Zhang, X.3    Li, Y.4
  • 48
    • 18444403761 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • K.L. Wu, and M.S. Yang A cluster validity index for fuzzy clustering Pattern Recognit. Lett. 26 9 2005 1275 1291
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.9 , pp. 1275-1291
    • Wu, K.L.1    Yang, M.S.2
  • 52
    • 53849105442 scopus 로고    scopus 로고
    • Financial failure prediction using efficiency as a predictor
    • X. Xu, and Y. Wang Financial failure prediction using efficiency as a predictor Expert Syst. Appl. 36 2009 366 373
    • (2009) Expert Syst. Appl. , vol.36 , pp. 366-373
    • Xu, X.1    Wang, Y.2
  • 55
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang Predicting corporate financial distress based on integration of support vector machine and logistic regression Expert Syst. Appl. 33 2007 434 440
    • (2007) Expert Syst. Appl. , vol.33 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 56
    • 84861191057 scopus 로고    scopus 로고
    • A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application
    • K. Coussement, and W. Buckinx A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application Eur. J. Oper. Res. 214 2011 732 738
    • (2011) Eur. J. Oper. Res. , vol.214 , pp. 732-738
    • Coussement, K.1    Buckinx, W.2
  • 57
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: Many could be better than all Artif. Intell. 137 1-2 2002 239 263
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 58
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput. 10 7 1998 1895 1923
    • (1998) Neural Comput. , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 59
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5 × 2 cv F test for comparing supervised classification learning algorithms Neural Comput. 11 8 1999 1885 1892
    • (1999) Neural Comput. , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.