-
1
-
-
0040453788
-
Statistical classification methods in consumer credit scoring: A review
-
D.J. Hand, and W.E. Henley Statistical classification methods in consumer credit scoring: A review J. R. Stat. Soc. Ser. A (Stat. Soc.) 160 1997 523 541
-
(1997)
J. R. Stat. Soc. Ser. A (Stat. Soc.)
, vol.160
, pp. 523-541
-
-
Hand, D.J.1
Henley, W.E.2
-
3
-
-
34447107877
-
Adaptive credit scoring with kernel learning methods
-
Y. Yang Adaptive credit scoring with kernel learning methods Eur. J. Oper. Res. 183 2007 1521 1536
-
(2007)
Eur. J. Oper. Res.
, vol.183
, pp. 1521-1536
-
-
Yang, Y.1
-
4
-
-
84155181098
-
Two credit scoring models based on dual strategy ensemble trees
-
G. Wang, J. Ma, L. Huang, and K. Xu Two credit scoring models based on dual strategy ensemble trees Knowl. Based Syst. 26 2012 61 68
-
(2012)
Knowl. Based Syst.
, vol.26
, pp. 61-68
-
-
Wang, G.1
Ma, J.2
Huang, L.3
Xu, K.4
-
5
-
-
0001106153
-
Problems in applying discriminant in credit scoring models
-
R.A. Eisenbeis Problems in applying discriminant in credit scoring models J. Bank. Financ. 2 1978 205 219
-
(1978)
J. Bank. Financ.
, vol.2
, pp. 205-219
-
-
Eisenbeis, R.A.1
-
7
-
-
1542603058
-
A k-NN classifier for assessing consumer credit risk
-
W.E. Henley, and D.J. Hand A k-NN classifier for assessing consumer credit risk Statistician 65 1996 77 95
-
(1996)
Statistician
, vol.65
, pp. 77-95
-
-
Henley, W.E.1
Hand, D.J.2
-
8
-
-
24144479105
-
Data mining via multiple criteria linear programming: Applications in credit card portfolio management
-
Y. Shi, Y. Peng, W. Xu, and X. Tang Data mining via multiple criteria linear programming: Applications in credit card portfolio management Int. J. Inf. Technol. Decis. Mak. 1 2002 131 151
-
(2002)
Int. J. Inf. Technol. Decis. Mak.
, vol.1
, pp. 131-151
-
-
Shi, Y.1
Peng, Y.2
Xu, W.3
Tang, X.4
-
9
-
-
38649085309
-
A multi-criteria convex quadratic programming model for credit data analysis
-
Y. Peng, G. Kou, Y. Shi, and Z.X. Chen A multi-criteria convex quadratic programming model for credit data analysis Decis. Support Syst. 44 4 2008 1016 1030
-
(2008)
Decis. Support Syst.
, vol.44
, Issue.4
, pp. 1016-1030
-
-
Peng, Y.1
Kou, G.2
Shi, Y.3
Chen, Z.X.4
-
10
-
-
17844382437
-
A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
-
T. Lee, C. Chiu, C. Lu, and I. Chen A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines Expert Syst. Appl. 28 2005 743 752
-
(2005)
Expert Syst. Appl.
, vol.28
, pp. 743-752
-
-
Lee, T.1
Chiu, C.2
Lu, C.3
Chen, I.4
-
11
-
-
84904965838
-
A novel model for credit card fraud detection using artificial immune systems
-
N.S. Halvaiee, and M.K. Akbari A novel model for credit card fraud detection using artificial immune systems Appl. Soft Comput. 24 2011 40 49
-
(2011)
Appl. Soft Comput.
, vol.24
, pp. 40-49
-
-
Halvaiee, N.S.1
Akbari, M.K.2
-
12
-
-
84655166588
-
An artificial immune classifier for credit scoring analysis
-
S.Y. Chang, and T.Y. Yeh An artificial immune classifier for credit scoring analysis Appl. Soft Comput. 12 2012 611 618
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 611-618
-
-
Chang, S.Y.1
Yeh, T.Y.2
-
13
-
-
16244405300
-
Building credit scoring models using genetic programming
-
C. Ong, J. Huang, and G. Tzeng Building credit scoring models using genetic programming Expert Syst. Appl. 29 2005 41 47
-
(2005)
Expert Syst. Appl.
, vol.29
, pp. 41-47
-
-
Ong, C.1
Huang, J.2
Tzeng, G.3
-
14
-
-
2442665617
-
Credit rating analysis with support vector machines and neural networks: A market comparative study
-
Z. Huang, H.C. Chen, C.J. Hsu, W.H. Chen, and S.S. Wu Credit rating analysis with support vector machines and neural networks: A market comparative study Decis. Support Syst. 37 4 2004 543 558
-
(2004)
Decis. Support Syst.
, vol.37
, Issue.4
, pp. 543-558
-
-
Huang, Z.1
Chen, H.C.2
Hsu, C.J.3
Chen, W.H.4
Wu, S.S.5
-
15
-
-
60249096424
-
Prediction model building with clustering-launched classification and support vector machines in credit scoring
-
S.T. Luo, B.W. Cheng, and C.H. Hsieh Prediction model building with clustering-launched classification and support vector machines in credit scoring Expert Syst. Appl. 36 2009 7562 7566
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7562-7566
-
-
Luo, S.T.1
Cheng, B.W.2
Hsieh, C.H.3
-
17
-
-
84910615991
-
Classification restricted Boltzmann machine for comprehensible credit scoring model
-
J.M. Tomczak, and M. Zieba Classification restricted Boltzmann machine for comprehensible credit scoring model Expert Syst. Appl. 42 2015 1789 1796
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 1789-1796
-
-
Tomczak, J.M.1
Zieba, M.2
-
18
-
-
84907481786
-
Credit scoring using the clustered support vector machine
-
T. Harris Credit scoring using the clustered support vector machine Expert Syst. Appl. 42 2015 741 750
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 741-750
-
-
Harris, T.1
-
19
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Inf. Fusion 6 2005 83 98
-
(2005)
Inf. Fusion
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
20
-
-
38349135448
-
From dynamic classifier selection to dynamic ensemble selection
-
A.H.R. Ko, R. Sabourin, and A.S. Britto Jr. From dynamic classifier selection to dynamic ensemble selection Pattern Recognit. 41 2008 1718 1731
-
(2008)
Pattern Recognit.
, vol.41
, pp. 1718-1731
-
-
Ko, A.H.R.1
Sabourin, R.2
Britto, A.S.3
-
21
-
-
33750432129
-
Cluster-based dynamic scoring model
-
M.K. Lim, and S.Y. Sohn Cluster-based dynamic scoring model Expert Syst. Appl. 32 2007 427 431
-
(2007)
Expert Syst. Appl.
, vol.32
, pp. 427-431
-
-
Lim, M.K.1
Sohn, S.Y.2
-
22
-
-
0036472946
-
A theoretical study on six classifier fusion strategies
-
L. Kuncheva A theoretical study on six classifier fusion strategies IEEE Trans. Pattern Anal. Mach. Intell. 24 2002 281 286
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 281-286
-
-
Kuncheva, L.1
-
23
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. Kuncheva, and C. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Mach. Learn. 51 2003 181 207
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
24
-
-
10444221886
-
Diversity creation methods: A survey and categorization
-
G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: A survey and categorization Inf. Fusion 6 2005 5 20
-
(2005)
Inf. Fusion
, vol.6
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
25
-
-
61449099344
-
Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity
-
R. Pasti, and L.N. de Castro Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity Inf. Sci. 179 2009 1441 1453
-
(2009)
Inf. Sci.
, vol.179
, pp. 1441-1453
-
-
Pasti, R.1
De Castro, L.N.2
-
26
-
-
84922842596
-
An ensemble approach of dual base learners for multi-class classification problem
-
M.P. Sesmero, J.M. Alonso-Weber, G. Gutierrez, A. Ledezma, and A. Sanchis An ensemble approach of dual base learners for multi-class classification problem Inf. Fusion 24 2015 122 136
-
(2015)
Inf. Fusion
, vol.24
, pp. 122-136
-
-
Sesmero, M.P.1
Alonso-Weber, J.M.2
Gutierrez, G.3
Ledezma, A.4
Sanchis, A.5
-
27
-
-
0030211964
-
Bagging predictors
-
L. Brieman Bagging predictors Mach. Learn. 24 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Brieman, L.1
-
28
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
29
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee Boosting the margin: A new explanation for the effectiveness of voting methods Ann. Stat. 26 1998 1651 1686
-
(1998)
Ann. Stat.
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
30
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
M. Wozniak, M. Grana, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
-
(2014)
Inf. Fusion
, vol.16
, pp. 3-17
-
-
Wozniak, M.1
Grana, M.2
Corchado, E.3
-
31
-
-
84904400137
-
Dynamic selection of classifiers-a comprehensive review
-
A.S. Britto Jr., R. Sabourin, and L.E.S. Oliveira Dynamic selection of classifiers-a comprehensive review Pattern Recognit. 47 2014 3665 3680
-
(2014)
Pattern Recognit.
, vol.47
, pp. 3665-3680
-
-
Britto, A.S.1
Sabourin, R.2
Oliveira, L.E.S.3
-
32
-
-
0035457787
-
Multiple classifier combination by clustering and selection
-
R. Liu, and B. Yuan Multiple classifier combination by clustering and selection Inf. Fusion 2 2001 163 168
-
(2001)
Inf. Fusion
, vol.2
, pp. 163-168
-
-
Liu, R.1
Yuan, B.2
-
33
-
-
10444224737
-
Classifier selection for majority voting
-
D. Ruta, and B. Gabrys Classifier selection for majority voting Inf. Fusion 6 2005 63 81
-
(2005)
Inf. Fusion
, vol.6
, pp. 63-81
-
-
Ruta, D.1
Gabrys, B.2
-
34
-
-
77958150674
-
A dynamic classifier ensemble selection approach for noise data
-
J. Xiao, C. He, X. Jiang, and D. Liu A dynamic classifier ensemble selection approach for noise data Inf. Sci. 180 2010 3402 3421
-
(2010)
Inf. Sci.
, vol.180
, pp. 3402-3421
-
-
Xiao, J.1
He, C.2
Jiang, X.3
Liu, D.4
-
35
-
-
79958833224
-
A probabilistic model of classifier competence for dynamic ensemble selection
-
T. Woloszynski, and M. Kurzynski A probabilistic model of classifier competence for dynamic ensemble selection Pattern Recognit. 44 2011 2656 2668
-
(2011)
Pattern Recognit.
, vol.44
, pp. 2656-2668
-
-
Woloszynski, T.1
Kurzynski, M.2
-
36
-
-
84867873453
-
Dynamic classifier ensemble using classification confidence
-
L. Li, B. Zou, Q. Hu, X. Wu, and D. Yu Dynamic classifier ensemble using classification confidence Neurocomputing 99 2013 581 591
-
(2013)
Neurocomputing
, vol.99
, pp. 581-591
-
-
Li, L.1
Zou, B.2
Hu, Q.3
Wu, X.4
Yu, D.5
-
37
-
-
84919706710
-
A new reverse reduce-error ensemble pruning algorithm
-
Q. Dai, T. Zhang, and N. Liu A new reverse reduce-error ensemble pruning algorithm Appl. Soft Comput. 28 2015 237 249
-
(2015)
Appl. Soft Comput.
, vol.28
, pp. 237-249
-
-
Dai, Q.1
Zhang, T.2
Liu, N.3
-
38
-
-
84924043420
-
Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms
-
I. Mendialdua, A. Arruti, E. Jauregi, E. Lazkano, and B. Sierra Classifier subset selection to construct multi-classifiers by means of estimation of distribution algorithms Neurocomputing 157 2015 46 60
-
(2015)
Neurocomputing
, vol.157
, pp. 46-60
-
-
Mendialdua, I.1
Arruti, A.2
Jauregi, E.3
Lazkano, E.4
Sierra, B.5
-
40
-
-
78650417769
-
Multiple classifier architectures and their application to credit risk assessment
-
S. Finlay Multiple classifier architectures and their application to credit risk assessment Eur. J. Oper. Res. 210 2011 368 378
-
(2011)
Eur. J. Oper. Res.
, vol.210
, pp. 368-378
-
-
Finlay, S.1
-
41
-
-
80255137251
-
Dynamic classifier ensemble model for customer classification with imbalanced class distribution
-
J. Xiao, L. Xie, C. He, and X. Jiang Dynamic classifier ensemble model for customer classification with imbalanced class distribution Expert Syst. Appl. 39 2012 3668 3675
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 3668-3675
-
-
Xiao, J.1
Xie, L.2
He, C.3
Jiang, X.4
-
42
-
-
84878300417
-
Consumer credit risk: Individual probability estimates using machine learning
-
J. Kruppa, A. Schwarz, G. Arminger, and A. Ziegler Consumer credit risk: Individual probability estimates using machine learning Expert Syst. Appl. 40 2013 5125 5131
-
(2013)
Expert Syst. Appl.
, vol.40
, pp. 5125-5131
-
-
Kruppa, J.1
Schwarz, A.2
Arminger, G.3
Ziegler, A.4
-
43
-
-
84908455123
-
A comparative study of classifier ensembles for bankruptcy prediction
-
C.F. Tsai, Y.F. Hsu, and D.C. Yen A comparative study of classifier ensembles for bankruptcy prediction Appl. Soft Comput. 24 2014 977 984
-
(2014)
Appl. Soft Comput.
, vol.24
, pp. 977-984
-
-
Tsai, C.F.1
Hsu, Y.F.2
Yen, D.C.3
-
44
-
-
0036230457
-
The new k-windows algorithm for improving the k-mean clustering algorithm
-
M.N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides The new k-windows algorithm for improving the k-mean clustering algorithm J. Complex. 18 2002 375 391
-
(2002)
J. Complex.
, vol.18
, pp. 375-391
-
-
Vrahatis, M.N.1
Boutsinas, B.2
Alevizos, P.3
Pavlides, G.4
-
45
-
-
0015644823
-
Cluster validity with fuzzy sets
-
J.C. Bezdek Cluster validity with fuzzy sets J. Cybern. 3 1974 58 73
-
(1974)
J. Cybern.
, vol.3
, pp. 58-73
-
-
Bezdek, J.C.1
-
46
-
-
77957870107
-
A cluster validity index for fuzzy clustering
-
B. Rezaee A cluster validity index for fuzzy clustering Fuzzy Sets Syst. 161 2010 3014 3025
-
(2010)
Fuzzy Sets Syst.
, vol.161
, pp. 3014-3025
-
-
Rezaee, B.1
-
47
-
-
36549068285
-
A cluster validity index for fuzzy clustering
-
Y. Zhang, W. Wang, X. Zhang, and Y. Li A cluster validity index for fuzzy clustering Inf. Sci. 178 2008 1205 1218
-
(2008)
Inf. Sci.
, vol.178
, pp. 1205-1218
-
-
Zhang, Y.1
Wang, W.2
Zhang, X.3
Li, Y.4
-
48
-
-
18444403761
-
A cluster validity index for fuzzy clustering
-
K.L. Wu, and M.S. Yang A cluster validity index for fuzzy clustering Pattern Recognit. Lett. 26 9 2005 1275 1291
-
(2005)
Pattern Recognit. Lett.
, vol.26
, Issue.9
, pp. 1275-1291
-
-
Wu, K.L.1
Yang, M.S.2
-
52
-
-
53849105442
-
Financial failure prediction using efficiency as a predictor
-
X. Xu, and Y. Wang Financial failure prediction using efficiency as a predictor Expert Syst. Appl. 36 2009 366 373
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 366-373
-
-
Xu, X.1
Wang, Y.2
-
55
-
-
33846454686
-
Predicting corporate financial distress based on integration of support vector machine and logistic regression
-
Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang Predicting corporate financial distress based on integration of support vector machine and logistic regression Expert Syst. Appl. 33 2007 434 440
-
(2007)
Expert Syst. Appl.
, vol.33
, pp. 434-440
-
-
Hua, Z.1
Wang, Y.2
Xu, X.3
Zhang, B.4
Liang, L.5
-
56
-
-
84861191057
-
A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application
-
K. Coussement, and W. Buckinx A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application Eur. J. Oper. Res. 214 2011 732 738
-
(2011)
Eur. J. Oper. Res.
, vol.214
, pp. 732-738
-
-
Coussement, K.1
Buckinx, W.2
-
57
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: Many could be better than all Artif. Intell. 137 1-2 2002 239 263
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.2
Tang, W.3
-
58
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput. 10 7 1998 1895 1923
-
(1998)
Neural Comput.
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
59
-
-
0033570831
-
Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
-
E. Alpaydin Combined 5 × 2 cv F test for comparing supervised classification learning algorithms Neural Comput. 11 8 1999 1885 1892
-
(1999)
Neural Comput.
, vol.11
, Issue.8
, pp. 1885-1892
-
-
Alpaydin, E.1
|