메뉴 건너뛰기




Volumn 91, Issue , 2016, Pages 10-18

A semiparametric negative binomial generalized linear model for modeling over-dispersed count data with a heavy tail: Characteristics and applications to crash data

Author keywords

Crash data; Dirichlet process; Generalized linear model; Negative binomial

Indexed keywords

DISPERSIONS;

EID: 84959462804     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2016.02.020     Document Type: Article
Times cited : (53)

References (52)
  • 1
    • 40149107148 scopus 로고    scopus 로고
    • Tobit analysis of vehicle accident rates on interstate highways
    • P.C. Anastasopoulos, A.P. Tarko, and F.L. Mannering Tobit analysis of vehicle accident rates on interstate highways Accid. Anal. Prev. 40 2 2008 768 775
    • (2008) Accid. Anal. Prev. , vol.40 , Issue.2 , pp. 768-775
    • Anastasopoulos, P.C.1    Tarko, A.P.2    Mannering, F.L.3
  • 2
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to bayesian nonparametric problems
    • C.E. Antoniak Mixtures of dirichlet processes with applications to bayesian nonparametric problems Ann. Stat. 2 6 1974 1152 1174
    • (1974) Ann. Stat. , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 4
    • 84904571456 scopus 로고    scopus 로고
    • The composite marginal likelihood (CML) inference approach with applications to discrete and mixed dependent variable models
    • C.R. Bhat The composite marginal likelihood (CML) inference approach with applications to discrete and mixed dependent variable models Found. Trends Econom. 7 1 2014 1 117
    • (2014) Found. Trends Econom. , vol.7 , Issue.1 , pp. 1-117
    • Bhat, C.R.1
  • 6
    • 0036964474 scopus 로고    scopus 로고
    • Approximate bayesian computation in population genetics
    • M.A. Beaumont, W.Y. Zhang, and D.J. Balding Approximate bayesian computation in population genetics Genetics 162 4 2002 2025 2035
    • (2002) Genetics , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.Y.2    Balding, D.J.3
  • 7
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • D.M. Blei, and M.I. Jordan Variational inference for dirichlet process mixtures Bayesian Anal. 1 1 2006 121 143
    • (2006) Bayesian Anal. , vol.1 , Issue.1 , pp. 121-143
    • Blei, D.M.1    Jordan, M.I.2
  • 9
    • 3543004598 scopus 로고    scopus 로고
    • Semiparametric regression for count data
    • C. Carota, and G. Parmigiani Semiparametric regression for count data Biometrika 89 2 2002 265 281
    • (2002) Biometrika , vol.89 , Issue.2 , pp. 265-281
    • Carota, C.1    Parmigiani, G.2
  • 11
    • 84950937290 scopus 로고
    • Bayesian density-estimation and inference using mixtures
    • M.D. Escobar, and M. West Bayesian density-estimation and inference using mixtures J. Am. Stat. Assoc. 90 430 1995 577 588
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.430 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 13
    • 0001120413 scopus 로고
    • A bayesian analysis of some nonparametric problems
    • T.S. Ferguson A bayesian analysis of some nonparametric problems Ann. Stat. 1973 209 230
    • (1973) Ann. Stat. , pp. 209-230
    • Ferguson, T.S.1
  • 14
    • 0000780135 scopus 로고
    • Prior distributions on spaces of probability measures
    • T.S. Ferguson Prior distributions on spaces of probability measures Ann. Stat. 1974 615 629
    • (1974) Ann. Stat. , pp. 615-629
    • Ferguson, T.S.1
  • 15
    • 84856106141 scopus 로고    scopus 로고
    • The negative binomial-lindley generalized linear model: characteristics and application using crash data
    • S.R. Geedipally, D. Lord, and S.S. Dhavala The negative binomial-lindley generalized linear model: characteristics and application using crash data Accid. Anal. Prev. 45 2012 258 265
    • (2012) Accid. Anal. Prev. , vol.45 , pp. 258-265
    • Geedipally, S.R.1    Lord, D.2    Dhavala, S.S.3
  • 16
    • 84886840654 scopus 로고    scopus 로고
    • A caution about using deviance information criterion while modeling traffic crashes
    • S.R. Geedipally, D. Lord, and S.S. Dhavala A caution about using deviance information criterion while modeling traffic crashes Saf. Sci. 62 2014 495 498
    • (2014) Saf. Sci. , vol.62 , pp. 495-498
    • Geedipally, S.R.1    Lord, D.2    Dhavala, S.S.3
  • 18
    • 77957141997 scopus 로고    scopus 로고
    • A semiparametric bayesian approach to network modelling using dirichlet process prior distributions
    • P. Ghosh, P. Gill, S. Muthukumarana, and T. Swartz A semiparametric bayesian approach to network modelling using dirichlet process prior distributions Aust. N. Z. J. Stat. 52 3 2010 289 302
    • (2010) Aust. N. Z. J. Stat. , vol.52 , Issue.3 , pp. 289-302
    • Ghosh, P.1    Gill, P.2    Muthukumarana, S.3    Swartz, T.4
  • 19
    • 79952793816 scopus 로고    scopus 로고
    • Posterior simulation of normalized random measure mixtures
    • J.E. Griffin, and S.G. Walker Posterior simulation of normalized random measure mixtures J. Comput. Graph.Stat. 20 1 2011 241 259
    • (2011) J. Comput. Graph.Stat. , vol.20 , Issue.1 , pp. 241-259
    • Griffin, J.E.1    Walker, S.G.2
  • 20
    • 0036487482 scopus 로고    scopus 로고
    • Flexible parametric models for long-tailed patent count distributions∗
    • J.Q. Guo, and P.K. Trivedi Flexible parametric models for long-tailed patent count distributions∗ Oxford Bull. Econ. Stat. 64 1 2002 63 82
    • (2002) Oxford Bull. Econ. Stat. , vol.64 , Issue.1 , pp. 63-82
    • Guo, J.Q.1    Trivedi, P.K.2
  • 21
    • 0003269499 scopus 로고    scopus 로고
    • Two tools for finding what function links the dependent variable to the explanatory variables
    • Conference, Lund, Sweden
    • E. Hauer, and J. Bamfo Two tools for finding what function links the dependent variable to the explanatory variables Proceedings of the ICTCT 1997 Conference, Lund, Sweden 1997
    • (1997) Proceedings of the ICTCT 1997
    • Hauer, E.1    Bamfo, J.2
  • 22
    • 84873948659 scopus 로고    scopus 로고
    • Clustering in linear mixed models with approximate dirichlet process mixtures using em algorithm
    • F. Heinzl, and G. Tutz Clustering in linear mixed models with approximate dirichlet process mixtures using em algorithm Stat. Model. 13 1 2013 41 67
    • (2013) Stat. Model. , vol.13 , Issue.1 , pp. 41-67
    • Heinzl, F.1    Tutz, G.2
  • 23
  • 25
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • H. Ishwaran, and L.F. James Gibbs sampling methods for stick-breaking priors J. Am. Stat. Assoc. 96 453 2001 161 173
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.453 , pp. 161-173
    • Ishwaran, H.1    James, L.F.2
  • 26
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate representations for the sum dirichlet process
    • H. Ishwaran, and M. Zarepour Exact and approximate representations for the sum dirichlet process Can. J. Stat. 30 2 2002 269 283
    • (2002) Can. J. Stat. , vol.30 , Issue.2 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 28
    • 77952089434 scopus 로고    scopus 로고
    • The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives
    • D. Lord, and F. Mannering The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives Transp. Res. Part A 44 5 2010 291 305
    • (2010) Transp. Res. Part A , vol.44 , Issue.5 , pp. 291-305
    • Lord, D.1    Mannering, F.2
  • 30
    • 0032221058 scopus 로고    scopus 로고
    • Estimating mixture of Dirichlet process models
    • S.N. Maceachern, and P. Muller Estimating mixture of Dirichlet process models J. Comput. Graph. Stat. 7 2 1998 223 238
    • (1998) J. Comput. Graph. Stat. , vol.7 , Issue.2 , pp. 223-238
    • Maceachern, S.N.1    Muller, P.2
  • 31
    • 84893489445 scopus 로고    scopus 로고
    • Analytic methods in accident research: methodological frontier and future directions
    • F.L. Mannering, and C.R. Bhat Analytic methods in accident research: methodological frontier and future directions Anal. Methods Accid. Res. 1 2014 1 22
    • (2014) Anal. Methods Accid. Res. , vol.1 , pp. 1-22
    • Mannering, F.L.1    Bhat, C.R.2
  • 32
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression profiles
    • M. Medvedovic, and S. Sivaganesan Bayesian infinite mixture model based clustering of gene expression profiles Bioinformatics 18 9 2002 1194 1206
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 33
    • 1842428184 scopus 로고    scopus 로고
    • Modeling traffic crash flow relationships for intersections - dispersion parameter, functional form, and bayes versus empirical bayes methods
    • S.P. Miaou, and D. Lord Modeling traffic crash flow relationships for intersections - dispersion parameter, functional form, and bayes versus empirical bayes methods Transp. Res. Rec. 1840 2003 31 40
    • (2003) Transp. Res. Rec. , vol.1840 , pp. 31-40
    • Miaou, S.P.1    Lord, D.2
  • 35
    • 84895901434 scopus 로고    scopus 로고
    • A bayesian semiparametric item response model with dirichlet process priors
    • K. Miyazaki, and T. Hoshino A bayesian semiparametric item response model with dirichlet process priors Psychometrika 74 3 2009 375 393
    • (2009) Psychometrika , vol.74 , Issue.3 , pp. 375-393
    • Miyazaki, K.1    Hoshino, T.2
  • 36
    • 0031496078 scopus 로고    scopus 로고
    • Dirichlet process mixed generalized linear models
    • S. Mukhopadhyay, and A.E. Gelfand Dirichlet process mixed generalized linear models J. Am. Stat. Assoc. 92 438 1997 633 639
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.438 , pp. 633-639
    • Mukhopadhyay, S.1    Gelfand, A.E.2
  • 38
    • 1842428182 scopus 로고    scopus 로고
    • Validation of fhwa crash models for rural intersections - lessons learned
    • J. Oh, C. Lyon, S. Washington, B. Persaud, and J. Bared Validation of fhwa crash models for rural intersections - lessons learned Transp. Res. Rec. 1840 2003 41 49
    • (2003) Transp. Res. Rec. , vol.1840 , pp. 41-49
    • Oh, J.1    Lyon, C.2    Washington, S.3    Persaud, B.4    Bared, J.5
  • 39
    • 34047215010 scopus 로고    scopus 로고
    • Flexible random-effects models using bayesian semi-parametric models: applications to institutional comparisons
    • D.I. Ohlssen, L.D. Sharples, and D.J. Spiegelhalter Flexible random-effects models using bayesian semi-parametric models: applications to institutional comparisons Stat. Med. 26 9 2007 2088 2112
    • (2007) Stat. Med. , vol.26 , Issue.9 , pp. 2088-2112
    • Ohlssen, D.I.1    Sharples, L.D.2    Spiegelhalter, D.J.3
  • 40
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective markov chain monte carlo methods for dirichlet process hierarchical models
    • O. Papaspiliopoulos, and G.O. Roberts Retrospective markov chain monte carlo methods for dirichlet process hierarchical models Biometrika 95 1 2008 169 186
    • (2008) Biometrika , vol.95 , Issue.1 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 41
    • 67349194666 scopus 로고    scopus 로고
    • Application of finite mixture models for vehicle crash data analysis
    • B.J. Park, and D. Lord Application of finite mixture models for vehicle crash data analysis Accid. Anal. Prev. 41 4 2009 683 691
    • (2009) Accid. Anal. Prev. , vol.41 , Issue.4 , pp. 683-691
    • Park, B.J.1    Lord, D.2
  • 42
    • 84906836605 scopus 로고    scopus 로고
    • Applying the generalized waring model for investigating sources of variance in motor vehicle crash analysis
    • Y. Peng, D. Lord, and Y. Zou Applying the generalized waring model for investigating sources of variance in motor vehicle crash analysis Accid. Anal. Prev. 73 2014 20 26
    • (2014) Accid. Anal. Prev. , vol.73 , pp. 20-26
    • Peng, Y.1    Lord, D.2    Zou, Y.3
  • 44
    • 0344552474 scopus 로고    scopus 로고
    • Selecting exposure measures in crash rate prediction for two-lane highway segments
    • X. Qin, J.N. Ivan, and N. Ravishanker Selecting exposure measures in crash rate prediction for two-lane highway segments Accid. Anal. Prev. 36 2 2004 183 191
    • (2004) Accid. Anal. Prev. , vol.36 , Issue.2 , pp. 183-191
    • Qin, X.1    Ivan, J.N.2    Ravishanker, N.3
  • 46
    • 0000720609 scopus 로고
    • A constructive definition of dirichlet priors
    • J. Sethuraman A constructive definition of dirichlet priors Stat. Sin. 4 2 1994 639 650
    • (1994) Stat. Sin. , vol.4 , Issue.2 , pp. 639-650
    • Sethuraman, J.1
  • 49
    • 84938401783 scopus 로고    scopus 로고
    • Exploring the application of the negative binomial-generalized exponential model for analyzing traffic crash data with excess zeros
    • P. Vangala, D. Lord, and S.R. Geedipally Exploring the application of the negative binomial-generalized exponential model for analyzing traffic crash data with excess zeros Anal. Methods Accid. Res. 7 2015 29 36
    • (2015) Anal. Methods Accid. Res. , vol.7 , pp. 29-36
    • Vangala, P.1    Lord, D.2    Geedipally, S.R.3
  • 51
    • 77955418023 scopus 로고    scopus 로고
    • Semiparametric bayes hierarchical models with mean and variance constraints
    • M.A. Yang, D.B. Dunson, and D. Baird Semiparametric bayes hierarchical models with mean and variance constraints Comput. Stat. Data Anal. 54 9 2010 2172 2186
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.9 , pp. 2172-2186
    • Yang, M.A.1    Dunson, D.B.2    Baird, D.3
  • 52
    • 84924858136 scopus 로고    scopus 로고
    • Modeling over-dispersed crash data with a long tail: examining the accuracy of the dispersion parameter in negative binomial models
    • Y. Zou, L. Wu, and D. Lord Modeling over-dispersed crash data with a long tail: examining the accuracy of the dispersion parameter in negative binomial models Anal. Methods Accid. Res. 5 2015 1 16
    • (2015) Anal. Methods Accid. Res. , vol.5 , pp. 1-16
    • Zou, Y.1    Wu, L.2    Lord, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.