메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 651-657

A nonparametric online model for air quality prediction

Author keywords

[No Author keywords available]

Indexed keywords

AIR QUALITY; ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; PARTICLES (PARTICULATE MATTER); POLLUTION; SENSOR NETWORKS;

EID: 84959459651     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (26)
  • 1
    • 77956401220 scopus 로고    scopus 로고
    • An agent-based intelligent environmental monitoring system
    • Athanasiadis, I. N., and Mitkas, P. A. 2004. An agent-based intelligent environmental monitoring system. CoRR.
    • (2004) CoRR
    • Athanasiadis, I.N.1    Mitkas, P.A.2
  • 5
    • 0029528238 scopus 로고
    • CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada
    • Burrows, W. R.; Benjamin, M.; Beauchamp, S.; Lord, E. R.; McCollor, D.; and Thomson, B. 1995. CART Decision-Tree Statistical Analysis and Prediction of Summer Season Maximum Surface Ozone for the Vancouver, Montreal, and Atlantic Regions of Canada. Journal of Applied Meteorology 34:1848-1862.
    • (1995) Journal of Applied Meteorology , vol.34 , pp. 1848-1862
    • Burrows, W.R.1    Benjamin, M.2    Beauchamp, S.3    Lord, E.R.4    McCollor, D.5    Thomson, B.6
  • 6
    • 44349111894 scopus 로고    scopus 로고
    • Air quality forecasting: A review and comparison of the approaches used internationally and in Australia
    • Cope, M. E., and Hess, G. D. 2005. Air quality forecasting: a review and comparison of the approaches used internationally and in australia. Clean Air and Environmental Quality 39:39-45.
    • (2005) Clean Air and Environmental Quality , vol.39 , pp. 39-45
    • Cope, M.E.1    Hess, G.D.2
  • 8
    • 84872354504 scopus 로고    scopus 로고
    • Bayesian optimisation for intelligent environmental monitoring
    • IEEE
    • Marchant, R., and Ramos, F. 2012. Bayesian optimisation for intelligent environmental monitoring. In IROS, 2242-2249. IEEE.
    • (2012) IROS , pp. 2242-2249
    • Marchant, R.1    Ramos, F.2
  • 9
    • 0016491465 scopus 로고
    • Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants
    • McCollister, G., and Wilson, K. 1975. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants. Atmospheric Environment 9:417-423.
    • (1975) Atmospheric Environment , vol.9 , pp. 417-423
    • McCollister, G.1    Wilson, K.2
  • 10
    • 33645798115 scopus 로고    scopus 로고
    • An integrated neural network model for PM10 forecasting
    • Perez, P., and Reyes, J. 2006. An integrated neural network model for PM10 forecasting. Atmospheric Environment 40(16):2845-2851.
    • (2006) Atmospheric Environment , vol.40 , Issue.16 , pp. 2845-2851
    • Perez, P.1    Reyes, J.2
  • 14
    • 0034113341 scopus 로고    scopus 로고
    • Narsto critical review of photochemical models and modeling
    • Russel, A., and Dennis, R. 2000. Narsto critical review of photochemical models and modeling. Atmospheric Environment 34:2283-2324.
    • (2000) Atmospheric Environment , vol.34 , pp. 2283-2324
    • Russel, A.1    Dennis, R.2
  • 15
    • 0028991044 scopus 로고
    • Forecasting ozone episodes in the Baltimore metropolitan area
    • Ryan, W. F. 1995. Forecasting ozone episodes in the baltimore metropolitan area. Atmospheric Environment 29:2387-2398.
    • (1995) Atmospheric Environment , vol.29 , pp. 2387-2398
    • Ryan, W.F.1
  • 16
    • 70449708596 scopus 로고    scopus 로고
    • Predicting air pollution using fuzzy genetic linear membership kriging in GIS
    • Shad, R.; Mesgari, M. S.; abkar, A.; and Shad, A. 2009. Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Computers, Environment and Urban Systems 33(6):472-481.
    • (2009) Computers, Environment and Urban Systems , vol.33 , Issue.6 , pp. 472-481
    • Shad, R.1    Mesgari, M.S.2    Abkar, A.3    Shad, A.4
  • 20
    • 0034237559 scopus 로고    scopus 로고
    • Analysis of spatial and temporal variations of PM 10 concentrations in the Netherlands using Kalman filtering
    • van der Wal, J., and Janssen, L. 2000. Analysis of spatial and temporal variations of PM 10 concentrations in the netherlands using kalman filtering. Atmospheric Environment 34(22):3675-3687.
    • (2000) Atmospheric Environment , vol.34 , Issue.22 , pp. 3675-3687
    • Van Der Wal, J.1    Janssen, L.2
  • 21
    • 0142029648 scopus 로고    scopus 로고
    • Communicating real-time and forecasted air quality to the public
    • Wayland, R. 2002. Communicating real-time and forecasted air quality to the public. Environment Management.
    • (2002) Environment Management
    • Wayland, R.1
  • 22
    • 0018028779 scopus 로고
    • An empirical model for forecasting maximum daily ozone levels in the northeastern United States
    • Wolff, G. T., and Lioy, P. J. 1978. An empirical model for forecasting maximum daily ozone levels in the northeastern united states. Journal of Air Pollution Control Association 28:1034-1038.
    • (1978) Journal of Air Pollution Control Association , vol.28 , pp. 1034-1038
    • Wolff, G.T.1    Lioy, P.J.2
  • 23
    • 84865865895 scopus 로고    scopus 로고
    • Real-time air quality forecasting, part i: History, techniques, and current status
    • Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C; and Bak-lanov, A. 2012a. Real-time air quality forecasting, part i: History, techniques, and current status. Atmospheric Environment 60:632-655.
    • (2012) Atmospheric Environment , vol.60 , pp. 632-655
    • Zhang, Y.1    Bocquet, M.2    Mallet, V.3    Seigneur, C.4    Baklanov, A.5
  • 24
    • 84865863440 scopus 로고    scopus 로고
    • Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects
    • Zhang, Y; Bocquet, M.; Mallet, V.; Seigneur, C; and Bak-lanov, A. 2012b. Real-time air quality forecasting, part ii: State of the science, current research needs, and future prospects. Atmospheric Environment 60:656-676.
    • (2012) Atmospheric Environment , vol.60 , pp. 656-676
    • Zhang, Y.1    Bocquet, M.2    Mallet, V.3    Seigneur, C.4    Bak-Lanov, A.5
  • 25
    • 45349092233 scopus 로고    scopus 로고
    • Online coupled meteorology and chemistry models: History, current status, and outlook
    • Zhang, Y. 2008. Online coupled meteorology and chemistry models: History, current status, and outlook. Atmospheric Chemistry and Physics Discussions 8:1833-1912.
    • (2008) Atmospheric Chemistry and Physics Discussions , vol.8 , pp. 1833-1912
    • Zhang, Y.1
  • 26
    • 33646472025 scopus 로고    scopus 로고
    • Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations
    • Zolghadri, A., and Cazaurang, F. 2006. Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environmental Modelling and Soil-Mw 21(6):885-894.
    • (2006) Environmental Modelling and Soil-Mw , vol.21 , Issue.6 , pp. 885-894
    • Zolghadri, A.1    Cazaurang, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.