-
1
-
-
33644659211
-
-
V.V. Abhyankar et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3), 389–393 (2006)
-
V.V. Abhyankar et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3), 389–393 (2006). Available at:http://www.ncbi.nlm.nih.gov/pubmed/16511622
-
-
-
-
2
-
-
31444454793
-
-
M. Abkarian, M. Faivre, H.A. Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc. Natl. Acad. Sci. 103(3), 538–542 (2006)
-
M. Abkarian, M. Faivre, H.A. Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc. Natl. Acad. Sci. 103(3), 538–542 (2006). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1334647&tool=pmcentrez&rendertype=abstract
-
-
-
-
3
-
-
84864580131
-
Microfluidics-based assessment of cell deformability
-
A. Adamo et al., Microfluidics-based assessment of cell deformability. Anal. Chem. 84(15), 6438–6443 (2012)
-
(2012)
Anal. Chem
, vol.84
, Issue.15
, pp. 6438-6443
-
-
Adamo, A.1
-
4
-
-
34249810035
-
-
S.-Y. Cheng et al., A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007)
-
S.-Y. Cheng et al., A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007). Available at:http://www.ncbi.nlm.nih.gov/pubmed/17538719
-
-
-
-
5
-
-
77954464616
-
-
W. Dai et al., A prototypic microfluidic platform generating stepwise concentration gradients for real-time study of cell apoptosis. Biomicrofluidics 4(2), 024101 14–16 (2010)
-
W. Dai et al., A prototypic microfluidic platform generating stepwise concentration gradients for real-time study of cell apoptosis. Biomicrofluidics 4(2), 024101 14–16 (2010). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2917874&tool=pmcentrez&rendertype=abstract
-
-
-
-
6
-
-
79751529866
-
-
G. Du et al., Cell types can be distinguished by measuring their viscoelastic recovery times using a micro-fluidic device. Biomed. Microdevices 13(1), 29–40 (2011)
-
G. Du et al., Cell types can be distinguished by measuring their viscoelastic recovery times using a micro-fluidic device. Biomed. Microdevices 13(1), 29–40 (2011). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3028074&tool=pmcentrez&rendertype=abstract
-
-
-
-
7
-
-
68049133054
-
-
S. Gabriele et al., Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J. 96(10), 4308–4318 (2009)
-
S. Gabriele et al., Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J. 96(10), 4308–4318 (2009). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2712202&tool=pmcentrez&rendertype=abstract
-
-
-
-
8
-
-
59949100697
-
-
T. Kim, M. Pinelis, M.M. Maharbiz, Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009)
-
T. Kim, M. Pinelis, M.M. Maharbiz, Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009). Available at:http://www.ncbi.nlm.nih.gov/pubmed/18688724
-
-
-
-
9
-
-
34147108810
-
-
W.A. Lam, M.J. Rosenbluth, D.A. Fletcher, Chemotherapy exposure increases leukemia cell stiffness. Blood 109(8), 3505–3508 (2007)
-
W.A. Lam, M.J. Rosenbluth, D.A. Fletcher, Chemotherapy exposure increases leukemia cell stiffness. Blood 109(8), 3505–3508 (2007). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1852256&tool=pmcentrez&rendertype=abstract
-
-
-
-
10
-
-
77957585276
-
-
W. Liu et al., Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device. Microfluid. Nanofluid. 9(4–5), 717–725 (2010)
-
W. Liu et al., Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device. Microfluid. Nanofluid. 9(4–5), 717–725 (2010). Available at:http://link.springer.com/10.1007/s10404-010-0584-5
-
-
-
-
11
-
-
62749110786
-
-
B. Ma et al., Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9(2), 232–238 (2009)
-
B. Ma et al., Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9(2), 232–238 (2009). Available at:http://www.ncbi.nlm.nih.gov/pubmed/19107278
-
-
-
-
12
-
-
82555202753
-
-
S. Mao et al., Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12(1), 219–226 (2012)
-
S. Mao et al., Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12(1), 219–226 (2012). Available at:http://www.ncbi.nlm.nih.gov/pubmed/22094544
-
-
-
-
13
-
-
13244299289
-
-
A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249(1–2), 245–249 (2005)
-
A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249(1–2), 245–249 (2005). Available at:http://cat.inist.fr/?aModele=afficheN&cpsidt=16520080
-
-
-
-
14
-
-
35948984518
-
Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels
-
B. Mosadegh et al., Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22), 10910–10912 (2007)
-
(2007)
Langmuir
, vol.23
, Issue.22
, pp. 10910-10912
-
-
Mosadegh, B.1
-
15
-
-
0031054601
-
-
P. Neuner et al., Pentoxifylline in vivo and in vitro down-regulates the expression of the intercellular adhesion molecule-1 in monocytes. Immunology 90(3), 435–439 (1997)
-
P. Neuner et al., Pentoxifylline in vivo and in vitro down-regulates the expression of the intercellular adhesion molecule-1 in monocytes. Immunology 90(3), 435–439 (1997). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1456607&tool=pmcentrez&rendertype=abstract
-
-
-
-
16
-
-
84887610008
-
-
N.-T. Nguyen et al., Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 65(11–12), 1403–1419 (2013)
-
N.-T. Nguyen et al., Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 65(11–12), 1403–1419 (2013). Available at:http://www.ncbi.nlm.nih.gov/pubmed/23726943
-
-
-
-
17
-
-
84870174975
-
-
P. Preira et al., Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13(1), 161–170 (2013)
-
P. Preira et al., Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13(1), 161–170 (2013). Available at:http://www.ncbi.nlm.nih.gov/pubmed/23147069
-
-
-
-
18
-
-
46149101778
-
-
M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8(7), 1062–1070 (2008)
-
M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8(7), 1062–1070 (2008). Available at:http://www.ncbi.nlm.nih.gov/pubmed/18584080
-
-
-
-
19
-
-
77957271872
-
-
P. Ruef et al., Effects of phosphodiesterase (III/IV)-inhibitors and cytokines on mechanical properties of neutrophilic granulocytes in neonates and adults. Clin. Hemorheol. Microcirc. 45(2–4), 301–310 (2010)
-
P. Ruef et al., Effects of phosphodiesterase (III/IV)-inhibitors and cytokines on mechanical properties of neutrophilic granulocytes in neonates and adults. Clin. Hemorheol. Microcirc. 45(2–4), 301–310 (2010). Available at:http://www.ncbi.nlm.nih.gov/pubmed/20675913
-
-
-
-
20
-
-
34548354876
-
-
W. Saadi et al., Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)
-
W. Saadi et al., Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007). Available at:http://www.ncbi.nlm.nih.gov/pubmed/17530414
-
-
-
-
21
-
-
0029982516
-
-
J.E. Souness et al., Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a “low-affinity” phosphodiesterase 4 conformer. Br. J. Pharmacol. 118(3), 649–658 (1996)
-
J.E. Souness et al., Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a “low-affinity” phosphodiesterase 4 conformer. Br. J. Pharmacol. 118(3), 649–658 (1996). Available at:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1909726&tool=pmcentrez&rendertype=abstract
-
-
-
-
22
-
-
0028972331
-
-
J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review. J. Membr. Sci. 107(1–2), 1–21 (1995)
-
J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review. J. Membr. Sci. 107(1–2), 1–21 (1995). Available at:http://cat.inist.fr/?aModele=afficheN&cpsidt=2919734
-
-
-
-
23
-
-
81855166635
-
-
S.C. Wuang, B. Ladoux, C.T. Lim, Probing the chemo-mechanical effects of an anti-cancer drug emodin on breast cancer cells. Cell. Mol. Bioeng. 4(3), 466–475 (2011)
-
S.C. Wuang, B. Ladoux, C.T. Lim, Probing the chemo-mechanical effects of an anti-cancer drug emodin on breast cancer cells. Cell. Mol. Bioeng. 4(3), 466–475 (2011). Available at:http://link.springer.com/10.1007/s12195-011-0163-1
-
-
-
|