메뉴 건너뛰기




Volumn 44, Issue 6, 2016, Pages 1017-1024

Improving the Accuracy of Land Cover Classification Using Fusion of Polarimetric SAR and Hyperspectral Images

Author keywords

Classification; Decision level fusion; Feature level fusion; Hyperspectral images; PolSAR data

Indexed keywords

ACCURACY ASSESSMENT; DECISION SUPPORT SYSTEM; IMAGE CLASSIFICATION; LAND COVER; MULTISPECTRAL IMAGE; PERFORMANCE ASSESSMENT; SATELLITE DATA; SYNTHETIC APERTURE RADAR;

EID: 84959370869     PISSN: 0255660X     EISSN: 09743006     Source Type: Journal    
DOI: 10.1007/s12524-016-0559-4     Document Type: Article
Times cited : (10)

References (27)
  • 2
    • 84894236621 scopus 로고    scopus 로고
    • Hyperspectral image classification based on iterative Support Vector Machine by integrating spatial-spectral information. In: IEEE International Geoscience and Remote Sensing Symposium
    • Baassou B., He, M., Farid, M. I., & Mei, S. (2013). Hyperspectral image classification based on iterative Support Vector Machine by integrating spatial-spectral information. In: IEEE International Geoscience and Remote Sensing Symposium, 1023–1026.
    • (2013) 1023–1026
    • Baassou, B.1    He, M.2    Farid, M.I.3    Mei, S.4
  • 5
    • 1642515028 scopus 로고    scopus 로고
    • Hyperspectral and sar imagery data fusion with positive boolean function. In: AeroSense
    • Chang, Y.-L., Chen, C.-T., Han, C.-C., Fan, K.-C., Chen, K., & Chang, J.-H. (2003). Hyperspectral and sar imagery data fusion with positive boolean function. In: AeroSense, 765–776.
    • (2003) 765–776
    • Chang, Y.-L.1    Chen, C.-T.2    Han, C.-C.3    Fan, K.-C.4    Chen, K.5    Chang, J.-H.6
  • 7
    • 84873152356 scopus 로고    scopus 로고
    • Land cover classification by Support Vector Machines using multi-temporal polarimetric SAR data. In: IEEE International Geoscience and Remote Sensing Symposium
    • Feng, Q., Chen, E.-X., Li, Z., Guo, Y., Zhou, W., Li, W., & Xu, G. (2012). Land cover classification by Support Vector Machines using multi-temporal polarimetric SAR data. In: IEEE International Geoscience and Remote Sensing Symposium, 6244–6246.
    • (2012) 6244–6246
    • Feng, Q.1    Chen, E.-X.2    Li, Z.3    Guo, Y.4    Zhou, W.5    Li, W.6    Xu, G.7
  • 8
    • 0344235442 scopus 로고    scopus 로고
    • Feature selection for support vector machines by means of genetic algorithm. In: IEEE International Tools with Artificial Intelligence
    • Fröhlich, H., Chapelle, O., & Schölkopf, B. (2003). Feature selection for support vector machines by means of genetic algorithm. In: IEEE International Tools with Artificial Intelligence, 142–148.
    • (2003) 142–148
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 9
    • 0035575132 scopus 로고    scopus 로고
    • Support vector machine classification of land cover: application to polarimetric SAR data. In: IEEE International Geoscience and Remote Sensing Symposium
    • Fukuda S., Hirosawa, H. (2001). Support vector machine classification of land cover: application to polarimetric SAR data. In: IEEE International Geoscience and Remote Sensing Symposium, 187–189.
    • (2001) 187–189
    • Fukuda, S.1    Hirosawa, H.2
  • 10
    • 84939876722 scopus 로고    scopus 로고
    • Improved IHS algorithm for fusing high resolution satellite images of urban areas
    • Ghanbari, Z., & Sahebi, M. R. (2014). Improved IHS algorithm for fusing high resolution satellite images of urban areas. Journal of the Indian Society of Remote Sensing, 42, 689–699.
    • (2014) Journal of the Indian Society of Remote Sensing , vol.42 , pp. 689-699
    • Ghanbari, Z.1    Sahebi, M.R.2
  • 12
    • 7544245525 scopus 로고    scopus 로고
    • Land use mapping with evidential fusion of features extracted from polarimetric synthetic aperture radar and hyperspectral imagery
    • Jouan, A., & Allard, Y. (2004). Land use mapping with evidential fusion of features extracted from polarimetric synthetic aperture radar and hyperspectral imagery. Information Fusion, 5, 251–267.
    • (2004) Information Fusion , vol.5 , pp. 251-267
    • Jouan, A.1    Allard, Y.2
  • 13
    • 32644445913 scopus 로고    scopus 로고
    • Application of support vector machine technology for weed and nitrogen stress detection in corn
    • Karimi, Y., Prasher, S., Patel, R., & Kim, S. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 51, 99–109.
    • (2006) Computers and Electronics in Agriculture , vol.51 , pp. 99-109
    • Karimi, Y.1    Prasher, S.2    Patel, R.3    Kim, S.4
  • 14
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • Koetz, B., Morsdorf, F., Van der Linden, S., Curt, T., & Allgöwer, B. (2008). Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management, 256, 263–271.
    • (2008) Forest Ecology and Management , vol.256 , pp. 263-271
    • Koetz, B.1    Morsdorf, F.2    Van der Linden, S.3    Curt, T.4    Allgöwer, B.5
  • 15
    • 0028562850 scopus 로고
    • Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution
    • Lee, J.-S., Grunes, M. R., & Kwok, R. (1994). Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. International Journal of Remote Sensing, 15, 2299–2311.
    • (1994) International Journal of Remote Sensing , vol.15 , pp. 2299-2311
    • Lee, J.-S.1    Grunes, M.R.2    Kwok, R.3
  • 17
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M., & Mather, P. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 1007–1011.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.2
  • 18
    • 80255131087 scopus 로고    scopus 로고
    • Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping
    • Petropoulos, G. P., Arvanitis, K., & Sigrimis, N. (2012). Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Systems with Applications, 39, 3800–3809.
    • (2012) Expert Systems with Applications , vol.39 , pp. 3800-3809
    • Petropoulos, G.P.1    Arvanitis, K.2    Sigrimis, N.3
  • 19
    • 0032030026 scopus 로고    scopus 로고
    • Review article multisensor image fusion in remote sensing: concepts, methods and applications
    • Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19, 823–854.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.L.2
  • 22
    • 0028463641 scopus 로고
    • Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images
    • Solberg, A. H. S., Jain, A. K., & Taxt, T. (1994). Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing, 32, 768–778.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , pp. 768-778
    • Solberg, A.H.S.1    Jain, A.K.2    Taxt, T.3
  • 24
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 26
    • 84994597544 scopus 로고    scopus 로고
    • Classification based on Four-component decomposition and SVM for PolSAR images
    • Yin, H., & Jian, C. (2012). Classification based on Four-component decomposition and SVM for PolSAR images. International Journal of Remote Sensing, 7, 1401–1406.
    • (2012) International Journal of Remote Sensing , vol.7 , pp. 1401-1406
    • Yin, H.1    Jian, C.2
  • 27
    • 79551513995 scopus 로고    scopus 로고
    • Multi-source remote sensing data fusion: status and trends
    • Zhang, J. (2010). Multi-source remote sensing data fusion: status and trends. International Journal of Image and Data Fusion, 1, 5–24.
    • (2010) International Journal of Image and Data Fusion , vol.1 , pp. 5-24
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.