-
1
-
-
80052509415
-
Electrochemistry at chemically modified graphenes
-
Ambrosi, A., A. Bonanni, Z. Sofer et al. 2011. Electrochemistry at chemically modified graphenes. Chem. Eur. J. 17: 10763-10770.
-
(2011)
Chem. Eur. J.
, vol.17
, pp. 10763-10770
-
-
Ambrosi, A.1
Bonanni, A.2
Sofer, Z.3
-
2
-
-
77955100818
-
Stacked graphene nanofibers for electrochemical oxidation of DNA bases
-
Ambrosi, A., and M. Pumera. 2010. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 12: 8943-8947.
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 8943-8947
-
-
Ambrosi, A.1
Pumera, M.2
-
3
-
-
76149139801
-
Platelet graphite nanofibers for electrochemical sensing and bio-sensing: The influence of graphene sheet orientation
-
Ambrosi, A., T. Sasaki, and M. Pumera. 2010. Platelet graphite nanofibers for electrochemical sensing and bio-sensing: The influence of graphene sheet orientation. Chem. Asian J. 5: 266.
-
(2010)
Chem. Asian J.
, vol.5
, pp. 266
-
-
Ambrosi, A.1
Sasaki, T.2
Pumera, M.3
-
5
-
-
79952937415
-
Graphene platform for hairpin-DNA-based impedimetric genosensing
-
Bonanni, A., and M. Pumera. 2011. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5: 2356.
-
(2011)
ACS Nano
, vol.5
, pp. 2356
-
-
Bonanni, A.1
Pumera, M.2
-
8
-
-
80051729076
-
Metallic impurities are responsible for electrocatalytic behavior of carbon nanotubes towards sulfides
-
Chng, E. L. K., and M. Pumera. 2011. Metallic impurities are responsible for electrocatalytic behavior of carbon nanotubes towards sulfides. Chem. Asian J. 6: 2304-2307.
-
(2011)
Chem. Asian J.
, vol.6
, pp. 2304-2307
-
-
Chng, E.L.K.1
Pumera, M.2
-
9
-
-
66149108916
-
The preferential electrocatalytic behavior of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains
-
Crevillen, A. G., M. Pumera, M. C. Gonzalez, et al. 2009. The preferential electrocatalytic behavior of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst 134: 657-662.
-
(2009)
Analyst
, vol.134
, pp. 657-662
-
-
Crevillen, A.G.1
Pumera, M.2
Gonzalez, M.C.3
-
10
-
-
27144462688
-
Fabrication of random assemblies of metal nanobonds: A general method
-
Davis, T. J., M. E. Hyde, and R. G. Compton. 2005. Fabrication of random assemblies of metal nanobonds: A general method. Angew. Chem. Int. Ed. 44: 6491-6496.
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 6491-6496
-
-
Davis, T.J.1
Hyde, M.E.2
Compton, R.G.3
-
12
-
-
77956549830
-
The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets
-
Goh, M. S., and M. Pumera. 2010a. The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets. Chem. Asian J. 5: 2355.
-
(2010)
Chem. Asian J.
, vol.5
, pp. 2355
-
-
Goh, M.S.1
Pumera, M.2
-
13
-
-
77958071742
-
Multilayer graphene nanoribbons exhibit larger capacitance than their few layer and single layer graphene counterparts
-
Goh, M. S., and M. Pumera. 2010b. Multilayer graphene nanoribbons exhibit larger capacitance than their few layer and single layer graphene counterparts. Electrochem. Commun. 12: 1375.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1375
-
-
Goh, M.S.1
Pumera, M.2
-
14
-
-
77951031178
-
Atomic structure of reduced graphene oxide
-
Gomez-Navarro, C., J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser. 2010. Atomic structure of reduced graphene oxide. Nano Lett. 10: 1144.
-
(2010)
Nano Lett.
, vol.10
, pp. 1144
-
-
Gomez-Navarro, C.1
Meyer, J.C.2
Sundaram, R.S.3
Chuvilin, A.4
Kurasch, S.5
Burghard, M.6
Kern, K.7
Kaiser, U.8
-
15
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306: 666.
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
16
-
-
70349315113
-
Electrochemistry of graphene: New horizons for sensing and energy storage
-
Pumera, M. 2009a. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 9: 211.
-
(2009)
Chem. Rec.
, vol.9
, pp. 211
-
-
Pumera, M.1
-
17
-
-
66149104734
-
The electrochemistry of carbon nanotubes: Fundamentals and applications
-
Pumera, M. 2009b. The electrochemistry of carbon nanotubes: Fundamentals and applications. Chem. Eur. J. 15: 4970-4978.
-
(2009)
Chem. Eur. J.
, vol.15
, pp. 4970-4978
-
-
Pumera, M.1
-
18
-
-
77957311480
-
Graphene-based nanomaterials and their electrochemistry
-
Pumera, M. 2010. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39: 4146-4157.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 4146-4157
-
-
Pumera, M.1
-
19
-
-
77955497657
-
Graphene for electrochemical sensing and biosensing
-
Pumera, M., A. Ambrosi, A. Bonanni, et al. 2010. Graphene for electrochemical sensing and biosensing. Trends Anal. Chem. 29: 954.
-
(2010)
Trends Anal. Chem.
, vol.29
, pp. 954
-
-
Pumera, M.1
Ambrosi, A.2
Bonanni, A.3
-
20
-
-
75749095675
-
What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties
-
Pumera, M., and Y. Miyahara. 2009. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties. Nanoscale 1: 260-265.
-
(2009)
Nanoscale
, vol.1
, pp. 260-265
-
-
Pumera, M.1
Miyahara, Y.2
-
21
-
-
57349103059
-
Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes
-
Pumera, M., T. Sasaki, and H. Iwai. 2008. Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes. Chem. Asian J. 3: 2046-2055.
-
(2008)
Chem. Asian J.
, vol.3
, pp. 2046-2055
-
-
Pumera, M.1
Sasaki, T.2
Iwai, H.3
-
22
-
-
70350238301
-
A mechanism of adsorption of β-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory
-
Pumera, M., R. Scipioni, H. Iwai, et al. 2009. A mechanism of adsorption of β-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory. Chem. Eur. J. 15: 10851.
-
(2009)
Chem. Eur. J.
, vol.15
, pp. 10851
-
-
Pumera, M.1
Scipioni, R.2
Iwai, H.3
-
23
-
-
56149113622
-
Graphene based ultracapacitors
-
Stoller, M. D., S. Park, Y. Zhu, J. An, and R. S. Ruoff. 2008. Graphene based ultracapacitors. Nano Lett. 8: 3498.
-
(2008)
Nano Lett.
, vol.8
, pp. 3498
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
24
-
-
80052594399
-
Graphene oxides exhibit limited cathodic potential window due to their inherent electroactivity
-
Toh, H. S., A. Ambrosi, C. K. Chua, and M. Pumera. 2011. Graphene oxides exhibit limited cathodic potential window due to their inherent electroactivity. J. Phys. Chem. C. 115: 17647-17650.
-
(2011)
J. Phys. Chem. C.
, vol.115
, pp. 17647-17650
-
-
Toh, H.S.1
Ambrosi, A.2
Chua, C.K.3
Pumera, M.4
-
25
-
-
77952858859
-
2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials
-
2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132: 7472-7477.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 7472-7477
-
-
Wang, H.1
Casalongue, H.S.2
Liang, Y.3
Dai, H.4
-
26
-
-
68349109573
-
Supercapacitor devices based on graphene materials
-
Wang, Y., Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen. 2009. Supercapacitor devices based on graphene materials. J. Phys. Chem. C. 113: 13103-13107.
-
(2009)
J. Phys. Chem. C.
, vol.113
, pp. 13103-13107
-
-
Wang, Y.1
Shi, Z.2
Huang, Y.3
Ma, Y.4
Wang, C.5
Chen, M.6
Chen, Y.7
-
27
-
-
70449336487
-
Sn/graphene nanocomposites with 3D architecture for enhanced reversible lithium storage in lithium ion batteries
-
Wang, G., B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim, 2009. Sn/graphene nanocomposites with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19: 8378-8384.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 8378-8384
-
-
Wang, G.1
Wang, B.2
Wang, X.3
Park, J.4
Dou, S.5
Ahn, H.6
Kim, K.7
-
28
-
-
57049185903
-
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
-
Yoo, E. J., J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, and I. Honma. 2008. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8: 2277.
-
(2008)
Nano Lett.
, vol.8
, pp. 2277
-
-
Yoo, E.J.1
Kim, J.2
Hosono, E.3
Zhou, H.-S.4
Kudo, T.5
Honma, I.6
-
29
-
-
54249157442
-
Site identification of carboxyl groups on graphene edges with Pt derivatives
-
Yuge, R., M. Zhang, M. Tomonari, T. Yoshitake, S. Iijima, and M. Yudasaka. 2008. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2: 1747.
-
(2008)
ACS Nano
, vol.2
, pp. 1747
-
-
Yuge, R.1
Zhang, M.2
Tomonari, M.3
Yoshitake, T.4
Iijima, S.5
Yudasaka, M.6
-
30
-
-
77954634200
-
Graphene-based materials as supercapacitor electrodes
-
Zhang, L. L., R. Zhou, and X. S. Zhao. 2010. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20: 5983-59922.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 5983-59922
-
-
Zhang, L.L.1
Zhou, R.2
Zhao, X.S.3
-
31
-
-
66749117817
-
Controlled synthesis of large area and patterned electrochemically reduced graphene oxide films
-
Zhou, M., Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, and S. Dong. 2009. Controlled synthesis of large area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15: 6116.
-
(2009)
Chem. Eur. J.
, vol.15
, pp. 6116
-
-
Zhou, M.1
Wang, Y.2
Zhai, Y.3
Zhai, J.4
Ren, W.5
Wang, F.6
Dong, S.7
|