메뉴 건너뛰기




Volumn , Issue , 2012, Pages 263-282

Electrochemistry of graphene-based nanomaterials

Author keywords

[No Author keywords available]

Indexed keywords

FUEL CELLS; FUEL STORAGE; GRAPHENE;

EID: 84959367626     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b13051     Document Type: Chapter
Times cited : (1)

References (31)
  • 1
    • 80052509415 scopus 로고    scopus 로고
    • Electrochemistry at chemically modified graphenes
    • Ambrosi, A., A. Bonanni, Z. Sofer et al. 2011. Electrochemistry at chemically modified graphenes. Chem. Eur. J. 17: 10763-10770.
    • (2011) Chem. Eur. J. , vol.17 , pp. 10763-10770
    • Ambrosi, A.1    Bonanni, A.2    Sofer, Z.3
  • 2
    • 77955100818 scopus 로고    scopus 로고
    • Stacked graphene nanofibers for electrochemical oxidation of DNA bases
    • Ambrosi, A., and M. Pumera. 2010. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 12: 8943-8947.
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 8943-8947
    • Ambrosi, A.1    Pumera, M.2
  • 3
    • 76149139801 scopus 로고    scopus 로고
    • Platelet graphite nanofibers for electrochemical sensing and bio-sensing: The influence of graphene sheet orientation
    • Ambrosi, A., T. Sasaki, and M. Pumera. 2010. Platelet graphite nanofibers for electrochemical sensing and bio-sensing: The influence of graphene sheet orientation. Chem. Asian J. 5: 266.
    • (2010) Chem. Asian J. , vol.5 , pp. 266
    • Ambrosi, A.1    Sasaki, T.2    Pumera, M.3
  • 5
    • 79952937415 scopus 로고    scopus 로고
    • Graphene platform for hairpin-DNA-based impedimetric genosensing
    • Bonanni, A., and M. Pumera. 2011. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5: 2356.
    • (2011) ACS Nano , vol.5 , pp. 2356
    • Bonanni, A.1    Pumera, M.2
  • 8
    • 80051729076 scopus 로고    scopus 로고
    • Metallic impurities are responsible for electrocatalytic behavior of carbon nanotubes towards sulfides
    • Chng, E. L. K., and M. Pumera. 2011. Metallic impurities are responsible for electrocatalytic behavior of carbon nanotubes towards sulfides. Chem. Asian J. 6: 2304-2307.
    • (2011) Chem. Asian J. , vol.6 , pp. 2304-2307
    • Chng, E.L.K.1    Pumera, M.2
  • 9
    • 66149108916 scopus 로고    scopus 로고
    • The preferential electrocatalytic behavior of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains
    • Crevillen, A. G., M. Pumera, M. C. Gonzalez, et al. 2009. The preferential electrocatalytic behavior of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst 134: 657-662.
    • (2009) Analyst , vol.134 , pp. 657-662
    • Crevillen, A.G.1    Pumera, M.2    Gonzalez, M.C.3
  • 10
    • 27144462688 scopus 로고    scopus 로고
    • Fabrication of random assemblies of metal nanobonds: A general method
    • Davis, T. J., M. E. Hyde, and R. G. Compton. 2005. Fabrication of random assemblies of metal nanobonds: A general method. Angew. Chem. Int. Ed. 44: 6491-6496.
    • (2005) Angew. Chem. Int. Ed. , vol.44 , pp. 6491-6496
    • Davis, T.J.1    Hyde, M.E.2    Compton, R.G.3
  • 12
    • 77956549830 scopus 로고    scopus 로고
    • The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets
    • Goh, M. S., and M. Pumera. 2010a. The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets. Chem. Asian J. 5: 2355.
    • (2010) Chem. Asian J. , vol.5 , pp. 2355
    • Goh, M.S.1    Pumera, M.2
  • 13
    • 77958071742 scopus 로고    scopus 로고
    • Multilayer graphene nanoribbons exhibit larger capacitance than their few layer and single layer graphene counterparts
    • Goh, M. S., and M. Pumera. 2010b. Multilayer graphene nanoribbons exhibit larger capacitance than their few layer and single layer graphene counterparts. Electrochem. Commun. 12: 1375.
    • (2010) Electrochem. Commun. , vol.12 , pp. 1375
    • Goh, M.S.1    Pumera, M.2
  • 16
    • 70349315113 scopus 로고    scopus 로고
    • Electrochemistry of graphene: New horizons for sensing and energy storage
    • Pumera, M. 2009a. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 9: 211.
    • (2009) Chem. Rec. , vol.9 , pp. 211
    • Pumera, M.1
  • 17
    • 66149104734 scopus 로고    scopus 로고
    • The electrochemistry of carbon nanotubes: Fundamentals and applications
    • Pumera, M. 2009b. The electrochemistry of carbon nanotubes: Fundamentals and applications. Chem. Eur. J. 15: 4970-4978.
    • (2009) Chem. Eur. J. , vol.15 , pp. 4970-4978
    • Pumera, M.1
  • 18
    • 77957311480 scopus 로고    scopus 로고
    • Graphene-based nanomaterials and their electrochemistry
    • Pumera, M. 2010. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39: 4146-4157.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 4146-4157
    • Pumera, M.1
  • 19
    • 77955497657 scopus 로고    scopus 로고
    • Graphene for electrochemical sensing and biosensing
    • Pumera, M., A. Ambrosi, A. Bonanni, et al. 2010. Graphene for electrochemical sensing and biosensing. Trends Anal. Chem. 29: 954.
    • (2010) Trends Anal. Chem. , vol.29 , pp. 954
    • Pumera, M.1    Ambrosi, A.2    Bonanni, A.3
  • 20
    • 75749095675 scopus 로고    scopus 로고
    • What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties
    • Pumera, M., and Y. Miyahara. 2009. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties. Nanoscale 1: 260-265.
    • (2009) Nanoscale , vol.1 , pp. 260-265
    • Pumera, M.1    Miyahara, Y.2
  • 21
    • 57349103059 scopus 로고    scopus 로고
    • Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes
    • Pumera, M., T. Sasaki, and H. Iwai. 2008. Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes. Chem. Asian J. 3: 2046-2055.
    • (2008) Chem. Asian J. , vol.3 , pp. 2046-2055
    • Pumera, M.1    Sasaki, T.2    Iwai, H.3
  • 22
    • 70350238301 scopus 로고    scopus 로고
    • A mechanism of adsorption of β-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory
    • Pumera, M., R. Scipioni, H. Iwai, et al. 2009. A mechanism of adsorption of β-nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory. Chem. Eur. J. 15: 10851.
    • (2009) Chem. Eur. J. , vol.15 , pp. 10851
    • Pumera, M.1    Scipioni, R.2    Iwai, H.3
  • 24
    • 80052594399 scopus 로고    scopus 로고
    • Graphene oxides exhibit limited cathodic potential window due to their inherent electroactivity
    • Toh, H. S., A. Ambrosi, C. K. Chua, and M. Pumera. 2011. Graphene oxides exhibit limited cathodic potential window due to their inherent electroactivity. J. Phys. Chem. C. 115: 17647-17650.
    • (2011) J. Phys. Chem. C. , vol.115 , pp. 17647-17650
    • Toh, H.S.1    Ambrosi, A.2    Chua, C.K.3    Pumera, M.4
  • 25
    • 77952858859 scopus 로고    scopus 로고
    • 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials
    • 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132: 7472-7477.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 7472-7477
    • Wang, H.1    Casalongue, H.S.2    Liang, Y.3    Dai, H.4
  • 27
    • 70449336487 scopus 로고    scopus 로고
    • Sn/graphene nanocomposites with 3D architecture for enhanced reversible lithium storage in lithium ion batteries
    • Wang, G., B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim, 2009. Sn/graphene nanocomposites with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19: 8378-8384.
    • (2009) J. Mater. Chem. , vol.19 , pp. 8378-8384
    • Wang, G.1    Wang, B.2    Wang, X.3    Park, J.4    Dou, S.5    Ahn, H.6    Kim, K.7
  • 28
    • 57049185903 scopus 로고    scopus 로고
    • Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
    • Yoo, E. J., J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, and I. Honma. 2008. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8: 2277.
    • (2008) Nano Lett. , vol.8 , pp. 2277
    • Yoo, E.J.1    Kim, J.2    Hosono, E.3    Zhou, H.-S.4    Kudo, T.5    Honma, I.6
  • 29
    • 54249157442 scopus 로고    scopus 로고
    • Site identification of carboxyl groups on graphene edges with Pt derivatives
    • Yuge, R., M. Zhang, M. Tomonari, T. Yoshitake, S. Iijima, and M. Yudasaka. 2008. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2: 1747.
    • (2008) ACS Nano , vol.2 , pp. 1747
    • Yuge, R.1    Zhang, M.2    Tomonari, M.3    Yoshitake, T.4    Iijima, S.5    Yudasaka, M.6
  • 30
    • 77954634200 scopus 로고    scopus 로고
    • Graphene-based materials as supercapacitor electrodes
    • Zhang, L. L., R. Zhou, and X. S. Zhao. 2010. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20: 5983-59922.
    • (2010) J. Mater. Chem. , vol.20 , pp. 5983-59922
    • Zhang, L.L.1    Zhou, R.2    Zhao, X.S.3
  • 31
    • 66749117817 scopus 로고    scopus 로고
    • Controlled synthesis of large area and patterned electrochemically reduced graphene oxide films
    • Zhou, M., Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, and S. Dong. 2009. Controlled synthesis of large area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15: 6116.
    • (2009) Chem. Eur. J. , vol.15 , pp. 6116
    • Zhou, M.1    Wang, Y.2    Zhai, Y.3    Zhai, J.4    Ren, W.5    Wang, F.6    Dong, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.