-
1
-
-
85014561619
-
A fast iterative shrinkagethresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM J. Imaging Science, 2(1):183-202, 2009
-
(2009)
SIAM J. Imaging Science
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
2
-
-
79960675858
-
Robust principal component analysis
-
May
-
E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM, 58(3), May 2011
-
(2011)
J. ACM
, vol.58
, Issue.3
-
-
Candès, E.1
Li, X.2
Ma, Y.3
Wright, J.4
-
3
-
-
84904293395
-
Clustering partially observed graphs via convex optimization
-
June
-
Y. Chen, A. Jalali, S. Sanghavi, and H. Xu. Clustering partially observed graphs via convex optimization. J. Machine Learning Research, 15:2213-2238, June 2014
-
(2014)
J. Machine Learning Research
, vol.15
, pp. 2213-2238
-
-
Chen, Y.1
Jalali, A.2
Sanghavi, S.3
Xu, H.4
-
4
-
-
84863052482
-
Multi-task low-rank affinity pursuit for image segmentation
-
November
-
B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan. Multi-task low-rank affinity pursuit for image segmentation. In Proc. IEEE Int'l Conf. Computer Vision, November 2011
-
(2011)
Proc. IEEE Int'l Conf. Computer Vision
-
-
Cheng, B.1
Liu, G.2
Wang, J.3
Huang, Z.4
Yan, S.5
-
6
-
-
84884541998
-
Sparse subspace clustering: Algorithm, theory, and applications
-
January
-
E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(11):2765-2781, January 2013
-
(2013)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.35
, Issue.11
, pp. 2765-2781
-
-
Elhamifar, E.1
Vidal, R.2
-
8
-
-
0001886818
-
Generalized procrustes analysis
-
March
-
J. C. Gower. Generalized procrustes analysis. Psychome-trika, 40(1):33-51, March 1975
-
(1975)
Psychome-trika
, vol.40
, Issue.1
, pp. 33-51
-
-
Gower, J.C.1
-
10
-
-
0002719797
-
The hungarian method for the assignment problem
-
H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83-97, 1955
-
(1955)
Naval Research Logistics Quarterly
, vol.2
, pp. 83-97
-
-
Kuhn, H.W.1
-
11
-
-
77953190742
-
Spectral clustering of linear subspaces for motion segmentation
-
September
-
F. Lauer and C. Schnorr. Spectral clustering of linear subspaces for motion segmentation. In Proc. IEEE Int'l Conf. Computer Vision, September 2009
-
(2009)
Proc. IEEE Int'l Conf. Computer Vision
-
-
Lauer, F.1
Schnorr, C.2
-
12
-
-
18144420071
-
Acquiring linear subspaces for face recognition under variable lighting
-
May
-
K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(5):684-698, May 2005
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.5
, pp. 684-698
-
-
Lee, K.1
Ho, J.2
Kriegman, D.3
-
13
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
June
-
F.-F. Li, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In Work-shop of IEEE Conf. Computer Vision and Pattern Recogni-tion, June 2004
-
(2004)
Work-shop of IEEE Conf. Computer Vision and Pattern Recogni-tion
-
-
Li, F.-F.1
Fergus, R.2
Perona, P.3
-
14
-
-
77955690054
-
-
Technical Report UILU-ENG-09-2215, University of Illinois at Urbana-Champaign, November
-
Z. Lin,M. Chen, L. Wu, and Y. Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical Report UILU-ENG-09-2215, University of Illinois at Urbana-Champaign, November 2009
-
(2009)
The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-rank Matrices
-
-
Lin, Z.1
Chen, M.2
Wu, L.3
Ma, Y.4
-
15
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
January
-
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Analysis andMachine Intelligence, 35(1):171-184, January 2013
-
(2013)
IEEE Trans. Pattern Analysis AndMachine Intelligence
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
17
-
-
79951739650
-
Robust low-rank subspace segmentation with semidefinite guarantees
-
December
-
Y. Ni, J. Sun, X. Yuan, S. Yan, and L.-F. Cheong. Robust low-rank subspace segmentation with semidefinite guarantees. In IEEE Int'l Conf. Data Mining Workshops, December 2010
-
(2010)
IEEE Int'l Conf. Data Mining Workshops
-
-
Ni, Y.1
Sun, J.2
Yuan, X.3
Yan, S.4
Cheong, L.-F.5
-
19
-
-
0002663098
-
SLINK: An optimally efficient algorithm for the single-link cluster method
-
R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16(1):30-34, 1973
-
(1973)
The Computer Journal
, vol.16
, Issue.1
, pp. 30-34
-
-
Sibson, R.1
-
20
-
-
1842435182
-
Correlation clustering: Maximizing agreements via semidefinite programming
-
January
-
C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming. In Proc. ACM-SIAM Symp. Discrete Algorithms, January 2004
-
(2004)
Proc. ACM-SIAM Symp. Discrete Algorithms
-
-
Swamy, C.1
-
22
-
-
84904151674
-
Efficient semidefinite spectral clustering via lagrange duality
-
August
-
Y. Yan, C. Shen, and H. Wang. Efficient semidefinite spectral clustering via lagrange duality. IEEE Trans. Image Process-ing, 23(8):3522-3534, August 2014
-
(2014)
IEEE Trans. Image Process-ing
, vol.23
, Issue.8
, pp. 3522-3534
-
-
Yan, Y.1
Shen, C.2
Wang, H.3
-
25
-
-
77958006812
-
Enhanced local subspace affinity for feature-based motion segmentation
-
February
-
L. Zappella, X. Lladó, E. Provenzi, and J. Salvi. Enhanced local subspace affinity for feature-based motion segmentation. Pattern Recognition, 44(2):454-470, February 2011
-
(2011)
Pattern Recognition
, vol.44
, Issue.2
, pp. 454-470
-
-
Zappella, L.1
Lladó, X.2
Provenzi, E.3
Salvi, J.4
-
26
-
-
79952502478
-
Adaptive motion segmentation algorithm based on the principal angles configuration
-
L. Zappella, E. Provenzi, X. Lladó, and J. Salvi. Adaptive motion segmentation algorithm based on the principal angles configuration. Computer Vision-ACCV 2010, Lecture Notes in Computer Science, 6494:15-26, 2011
-
(2011)
Computer Vision-ACCV 2010, Lecture Notes in Computer Science
, vol.6494
, pp. 15-26
-
-
Zappella, L.1
Provenzi, E.2
Lladó, X.3
Salvi, J.4
-
29
-
-
84898937175
-
Spectral relaxation for k-means clustering
-
December
-
H. Zha, X. He, C. Ding, M. Gu, and H. D. Simon. Spectral relaxation for k-means clustering. In Proc. Neural Informa-tion Processing Systems, December 2002
-
(2002)
Proc. Neural Informa-tion Processing Systems
-
-
Zha, H.1
He, X.2
Ding, C.3
Gu, M.4
Simon, H.D.5
-
30
-
-
84866683891
-
Practical low-rank matrix approximation under robust l1-norm
-
June
-
Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank matrix approximation under robust l1-norm. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012
-
(2012)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
-
-
Zheng, Y.1
Liu, G.2
Sugimoto, S.3
Yan, S.4
Okutomi, M.5
|