-
1
-
-
84874671928
-
Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins
-
COI: 1:CAS:528:DC%2BC3sXhtFShurg%3D, PID: 23334420
-
Abbas YM, Pichlmair A, Gorna MW, Superti-Furga G, Nagar B. 2013. Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature, 494: 60–64.
-
(2013)
Nature
, vol.494
, pp. 60-64
-
-
Abbas, Y.M.1
Pichlmair, A.2
Gorna, M.W.3
Superti-Furga, G.4
Nagar, B.5
-
2
-
-
84863109422
-
Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses
-
COI: 1:CAS:528:DC%2BC38XptlamsL8%3D, PID: 22481600
-
Adams MJ, Carstens EB. 2012. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol, 157: 1411–1422.
-
(2012)
Arch Virol
, vol.157
, pp. 1411-1422
-
-
Adams, M.J.1
Carstens, E.B.2
-
3
-
-
0032710835
-
Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a
-
COI: 1:CAS:528:DyaK1MXnsV2mtLY%3D, PID: 10559320
-
Ahola T, Ahlquist P. 1999. Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol, 73: 10061–10069.
-
(1999)
J Virol
, vol.73
, pp. 10061-10069
-
-
Ahola, T.1
Ahlquist, P.2
-
4
-
-
0028833053
-
Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP
-
COI: 1:CAS:528:DyaK2MXjt12qt74%3D, PID: 7831320
-
Ahola T, Kaariainen L. 1995. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci USA, 92: 507–511.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 507-511
-
-
Ahola, T.1
Kaariainen, L.2
-
5
-
-
0019276997
-
5′-terminal cap structure in eucaryotic messenger ribonucleic acids
-
COI: 1:CAS:528:DyaL3cXltV2jtbo%3D, PID: 6247631
-
Banerjee AK. 1980. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev, 44: 175–205.
-
(1980)
Microbiol Rev
, vol.44
, pp. 175-205
-
-
Banerjee, A.K.1
-
6
-
-
7644238616
-
The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor
-
COI: 1:CAS:528:DC%2BD2cXhtVWhu7vM, PID: 15507608
-
Bhardwaj K, Guarino L, Kao CC. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol, 78: 12218–12224.
-
(2004)
J Virol
, vol.78
, pp. 12218-12224
-
-
Bhardwaj, K.1
Guarino, L.2
Kao, C.C.3
-
7
-
-
77954053731
-
In vitro reconstitution of SARS-coronavirus mRNA cap methylation
-
PID: 20421945
-
Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6: e1000863.
-
(2010)
PLoS Pathog
, vol.6
, pp. 1000863
-
-
Bouvet, M.1
Debarnot, C.2
Imbert, I.3
Selisko, B.4
Snijder, E.J.5
Canard, B.6
Decroly, E.7
-
8
-
-
84862203582
-
RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex
-
COI: 1:CAS:528:DC%2BC38XptlaiurY%3D, PID: 22635272
-
Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA, 109: 9372–9377.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 9372-9377
-
-
Bouvet, M.1
Imbert, I.2
Subissi, L.3
Gluais, L.4
Canard, B.5
Decroly, E.6
-
9
-
-
84875194092
-
RIG-I goes beyond naked recognition
-
COI: 1:CAS:528:DC%2BC3sXktFWktr8%3D, PID: 23498950
-
Bowzard JB, Ranjan P, Sambhara S. 2013. RIG-I goes beyond naked recognition. Cell Host Microbe, 13: 247–249.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 247-249
-
-
Bowzard, J.B.1
Ranjan, P.2
Sambhara, S.3
-
10
-
-
0024411889
-
Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot
-
COI: 1:CAS:528:DyaL1MXktlCgt74%3D, PID: 2720781
-
Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell, 57: 537–547.
-
(1989)
Cell
, vol.57
, pp. 537-547
-
-
Brierley, I.1
Digard, P.2
Inglis, S.C.3
-
11
-
-
84879041188
-
Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart
-
PID: 23787162
-
Cauchemez S, van Kerkhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM. 2013. Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill, 18: 20503.
-
(2013)
Euro Surveill
, vol.18
, pp. 20503
-
-
Cauchemez, S.1
van Kerkhove, M.D.2
Riley, S.3
Donnelly, C.A.4
Fraser, C.5
Ferguson, N.M.6
-
12
-
-
35348869237
-
Biochemical characterization of exoribonuclease encoded by SARS coronavirus
-
COI: 1:CAS:528:DC%2BD2sXhtFKqs7zL, PID: 17927896
-
Chen P, Jiang M, Hu T, Liu Q, Chen XS, Guo D. 2007. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J Biochem Mol Biol, 40: 649–655.
-
(2007)
J Biochem Mol Biol
, vol.40
, pp. 649-655
-
-
Chen, P.1
Jiang, M.2
Hu, T.3
Liu, Q.4
Chen, X.S.5
Guo, D.6
-
13
-
-
62549159638
-
Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase
-
COI: 1:CAS:528:DC%2BD1MXivFGmtr0%3D, PID: 19208801
-
Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA, 106: 3484–3489.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 3484-3489
-
-
Chen, Y.1
Cai, H.2
Pan, J.3
Xiang, N.4
Tien, P.5
Ahola, T.6
Guo, D.7
-
14
-
-
80055066817
-
Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex
-
COI: 1:CAS:528:DC%2BC3MXhsVWqsrfN, PID: 22022266
-
Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, Ahola T, Liang Y, Liu X, Guo D. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7: e1002294.
-
(2011)
PLoS Pathog
, vol.7
, pp. 1002294
-
-
Chen, Y.1
Su, C.2
Ke, M.3
Jin, X.4
Xu, L.5
Zhang, Z.6
Wu, A.7
Sun, Y.8
Yang, Z.9
Tien, P.10
Ahola, T.11
Liang, Y.12
Liu, X.13
Guo, D.14
-
15
-
-
84878197216
-
Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7- methyltransferase
-
COI: 1:CAS:528:DC%2BC3sXhtFakt7%2FO, PID: 23536667
-
Chen Y, Tao J, Sun Y, Wu A, Su C, Gao G, Cai H, Qiu S, Wu Y, Ahola T, Guo D. 2013. Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7- methyltransferase. J Virol, 87: 6296–6305.
-
(2013)
J Virol
, vol.87
, pp. 6296-6305
-
-
Chen, Y.1
Tao, J.2
Sun, Y.3
Wu, A.4
Su, C.5
Gao, G.6
Cai, H.7
Qiu, S.8
Wu, Y.9
Ahola, T.10
Guo, D.11
-
16
-
-
20444415618
-
Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor
-
COI: 1:CAS:528:DC%2BD2MXmtFyqurc%3D, PID: 15964937
-
Chrebet GL, Wisniewski D, Perkins AL, Deng Q, Kurtz MB, Marcy A, Parent SA. 2005. Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen, 10: 355–364.
-
(2005)
J Biomol Screen
, vol.10
, pp. 355-364
-
-
Chrebet, G.L.1
Wisniewski, D.2
Perkins, A.L.3
Deng, Q.4
Kurtz, M.B.5
Marcy, A.6
Parent, S.A.7
-
17
-
-
73849107519
-
Regulation of mRNA cap methylation
-
COI: 1:CAS:528:DC%2BD1MXhs1Sru7fJ
-
Cowling VH. 2010. Regulation of mRNA cap methylation. Biochem J, 425: 295–302.
-
(2010)
Biochem J
, vol.425
, pp. 295-302
-
-
Cowling, V.H.1
-
18
-
-
78549284909
-
2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members
-
COI: 1:CAS:528:DC%2BC3cXhsVeis7%2FO, PID: 21085181
-
Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller RM, Gale M, Jr., Shi PY, Diamond MS. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468: 452–456.
-
(2010)
Nature
, vol.468
, pp. 452-456
-
-
Daffis, S.1
Szretter, K.J.2
Schriewer, J.3
Li, J.4
Youn, S.5
Errett, J.6
Lin, T.Y.7
Schneller, S.8
Zust, R.9
Dong, H.10
Thiel, V.11
Sen, G.C.12
Fensterl, V.13
Klimstra, W.B.14
Pierson, T.C.15
Buller, R.M.16
Gale, M.J.17
Shi, P.Y.18
Diamond, M.S.19
-
19
-
-
0018620777
-
Transcription units for mRNA production in eukaryotic cells and their DNA viruses
-
COI: 1:CAS:528:DyaE1MXlsFarsr0%3D, PID: 523634
-
Darnell JE, Jr. 1979. Transcription units for mRNA production in eukaryotic cells and their DNA viruses. Prog Nucleic Acid Res Mol Biol, 22: 327–353.
-
(1979)
Prog Nucleic Acid Res Mol Biol
, vol.22
, pp. 327-353
-
-
Darnell, J.E.1
-
20
-
-
36549088581
-
Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase
-
COI: 1:CAS:528:DC%2BD2sXhtlKmtrfP, PID: 17989694
-
De la Pena M, Kyrieleis OJ, Cusack S. 2007. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J, 26: 4913–4925.
-
(2007)
EMBO J
, vol.26
, pp. 4913-4925
-
-
De la Pena, M.1
Kyrieleis, O.J.2
Cusack, S.3
-
21
-
-
79958067824
-
Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-OMethyltransferase nsp10/nsp16 Complex
-
COI: 1:CAS:528:DC%2BC3MXntVajsrY%3D, PID: 21637813
-
Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B. 2011. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-OMethyltransferase nsp10/nsp16 Complex. PLoS Pathog, 7: e1002059.
-
(2011)
PLoS Pathog
, vol.7
, pp. 1002059
-
-
Decroly, E.1
Debarnot, C.2
Ferron, F.3
Bouvet, M.4
Coutard, B.5
Imbert, I.6
Gluais, L.7
Papageorgiou, N.8
Sharff, A.9
Bricogne, G.10
Ortiz-Lombardia, M.11
Lescar, J.12
Canard, B.13
-
22
-
-
83855162132
-
Conventional and unconventional mechanisms for capping viral mRNA
-
COI: 1:CAS:528:DC%2BC3MXhsFGrsr3N
-
Decroly E, Ferron F, Lescar J, Canard B. 2012. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol, 10: 51–65.
-
(2012)
Nat Rev Microbiol
, vol.10
, pp. 51-65
-
-
Decroly, E.1
Ferron, F.2
Lescar, J.3
Canard, B.4
-
23
-
-
47749138964
-
Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside- 2′O)-methyltransferase activity
-
COI: 1:CAS:528:DC%2BD1cXpsVOqu7w%3D, PID: 18417574
-
Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, Gorbalenya AE, Snijder EJ, Canard B. 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside- 2′O)-methyltransferase activity. J Virol, 82: 8071–8084.
-
(2008)
J Virol
, vol.82
, pp. 8071-8084
-
-
Decroly, E.1
Imbert, I.2
Coutard, B.3
Bouvet, M.4
Selisko, B.5
Alvarez, K.6
Gorbalenya, A.E.7
Snijder, E.J.8
Canard, B.9
-
24
-
-
77954055072
-
Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing
-
PID: 20463816
-
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. 2010. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog, 6: e1000896.
-
(2010)
PLoS Pathog
, vol.6
, pp. 1000896
-
-
Eckerle, L.D.1
Becker, M.M.2
Halpin, R.A.3
Li, K.4
Venter, E.5
Lu, X.6
Scherbakova, S.7
Graham, R.L.8
Baric, R.S.9
Stockwell, T.B.10
Spiro, D.J.11
Denison, M.R.12
-
25
-
-
36048969246
-
High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants
-
COI: 1:CAS:528:DC%2BD2sXhtlKkurfO, PID: 17804504
-
Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81: 12135–12144.
-
(2007)
J Virol
, vol.81
, pp. 12135-12144
-
-
Eckerle, L.D.1
Lu, X.2
Sperry, S.M.3
Choi, L.4
Denison, M.R.5
-
27
-
-
84864912887
-
The viral RNA capping machinery as a target for antiviral drugs
-
COI: 1:CAS:528:DC%2BC38XhsVemsb%2FO, PID: 22841701
-
Ferron F, Decroly E, Selisko B, Canard B. 2012. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res, 96: 21–31.
-
(2012)
Antiviral Res
, vol.96
, pp. 21-31
-
-
Ferron, F.1
Decroly, E.2
Selisko, B.C.B.3
-
28
-
-
84946012017
-
Discovery of m(7)G-cap in eukaryotic mRNAs
-
PID: 26460318
-
Furuichi Y. 2015. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci, 91: 394–409.
-
(2015)
Proc Jpn Acad Ser B Phys Biol Sci
, vol.91
, pp. 394-409
-
-
Furuichi, Y.1
-
29
-
-
0034567861
-
Viral and cellular mRNA capping: past and prospects
-
COI: 1:CAS:528:DC%2BD3cXosV2qs7Y%3D, PID: 11050942
-
Furuichi Y, Shatkin AJ. 2000. Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135–184.
-
(2000)
Adv Virus Res
, vol.55
, pp. 135-184
-
-
Furuichi, Y.1
Shatkin, A.J.2
-
30
-
-
84889573658
-
Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
-
COI: 1:CAS:528:DC%2BC3sXhslSnsLrF, PID: 24172901
-
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503: 535–538.
-
(2013)
Nature
, vol.503
, pp. 535-538
-
-
Ge, X.Y.1
Li, J.L.2
Yang, X.L.3
Chmura, A.A.4
Zhu, G.5
Epstein, J.H.6
Mazet, J.K.7
Hu, B.8
Zhang, W.9
Peng, C.10
Zhang, Y.J.11
Luo, C.M.12
Tan, B.13
Wang, N.14
Zhu, Y.15
Crameri, G.16
Zhang, S.Y.17
Wang, L.F.18
Daszak, P.19
Shi, Z.L.20
more..
-
31
-
-
0344304518
-
A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae
-
COI: 1:CAS:528:DC%2BD3sXosVajsbY%3D, PID: 14579179
-
Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L. 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol, 148: 2207–2235.
-
(2003)
Arch Virol
, vol.148
, pp. 2207-2235
-
-
Gonzalez, J.M.1
Gomez-Puertas, P.2
Cavanagh, D.3
Gorbalenya, A.E.4
Enjuanes, L.5
-
32
-
-
33645093947
-
Nidovirales: evolving the largest RNA virus genome
-
COI: 1:CAS:528:DC%2BD28XivVCmtL8%3D, PID: 16503362
-
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res, 117: 17–37.
-
(2006)
Virus Res
, vol.117
, pp. 17-37
-
-
Gorbalenya, A.E.1
Enjuanes, L.2
Ziebuhr, J.3
Snijder, E.J.4
-
33
-
-
0034074196
-
A yeast-based genetic system for functional analysis of viral mRNA capping enzymes
-
COI: 1:CAS:528:DC%2BD3cXjvFans7k%3D, PID: 10823853
-
Ho CK, Martins A, Shuman S. 2000. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. J Virol, 74: 5486–5494.
-
(2000)
J Virol
, vol.74
, pp. 5486-5494
-
-
Ho, C.K.1
Martins, A.2
Shuman, S.3
-
34
-
-
33750976374
-
5′-Triphosphate RNA is the ligand for RIG-I
-
PID: 17038590
-
Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science, 314: 994–997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
Ellegast, J.2
Kim, S.3
Brzozka, K.4
Jung, A.5
Kato, H.6
Poeck, H.7
Akira, S.8
Conzelmann, K.K.9
Schlee, M.10
Endres, S.11
Hartmann, G.12
-
35
-
-
20244387729
-
Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus
-
COI: 1:CAS:528:DC%2BD2MXjs12qt7Y%3D, PID: 15827143
-
Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, Li Z, Zhu Y, Tien P, Guo D. 2005. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol, 79: 5288–5295.
-
(2005)
J Virol
, vol.79
, pp. 5288-5295
-
-
Hussain, S.1
Pan, J.2
Chen, Y.3
Yang, Y.4
Xu, J.5
Peng, Y.6
Wu, Y.7
Li, Z.8
Zhu, Y.9
Tien, P.10
Guo, D.11
-
36
-
-
33750218147
-
A second, noncanonical RNA-dependent RNA polymerase in SARS coronavirus
-
COI: 1:CAS:528:DC%2BD28XhtVyktb%2FJ, PID: 17024178
-
Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. 2006. A second, noncanonical RNA-dependent RNA polymerase in SARS coronavirus. Embo J, 25: 4933–4942.
-
(2006)
Embo J
, vol.25
, pp. 4933-4942
-
-
Imbert, I.1
Guillemot, J.C.2
Bourhis, J.M.3
Bussetta, C.4
Coutard, B.5
Egloff, M.P.6
Ferron, F.7
Gorbalenya, A.E.8
Canard, B.9
-
37
-
-
2442679084
-
Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase
-
COI: 1:CAS:528:DC%2BD2cXksFCgs7k%3D, PID: 15140959
-
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol, 78: 5619–5632.
-
(2004)
J Virol
, vol.78
, pp. 5619-5632
-
-
Ivanov, K.A.1
Thiel, V.2
Dobbe, J.3
Meer, Y.4
Snijder, E.J.5
Ziebuhr, J.6
-
38
-
-
3142689813
-
Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities
-
COI: 1:CAS:528:DC%2BD2cXlvFSgs7k%3D, PID: 15220459
-
Ivanov KA, Ziebuhr J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol, 78: 7833–7838.
-
(2004)
J Virol
, vol.78
, pp. 7833-7838
-
-
Ivanov, K.A.1
Ziebuhr, J.2
-
39
-
-
0027409307
-
Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus
-
COI: 1:CAS:528:DyaK3sXhs1agtbc%3D, PID: 8437222
-
Jin H, Elliott RM. 1993. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol, 67: 1396–1404.
-
(1993)
J Virol
, vol.67
, pp. 1396-1404
-
-
Jin, H.1
Elliott, R.M.2
-
40
-
-
84881376606
-
Characterization of the guanine- N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP
-
COI: 1:CAS:528:DC%2BC3sXpsFSjtLo%3D, PID: 23702198
-
Jin X, Chen Y, Sun Y, Zeng C, Wang Y, Tao J, Wu A, Yu X, Zhang Z, Tian J, Guo D. 2013. Characterization of the guanine- N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res, 176: 45–52.
-
(2013)
Virus Res
, vol.176
, pp. 45-52
-
-
Jin, X.1
Chen, Y.2
Sun, Y.3
Zeng, C.4
Wang, Y.5
Tao, J.6
Wu, A.7
Yu, X.8
Zhang, Z.9
Tian, J.10
Guo, D.11
-
41
-
-
34249940526
-
Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch
-
COI: 1:CAS:528:DC%2BD2sXmt1Ort7w%3D, PID: 17409150
-
Joseph JS, Saikatendu KS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. 2007. Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch. J Virol, 81: 6700–6708.
-
(2007)
J Virol
, vol.81
, pp. 6700-6708
-
-
Joseph, J.S.1
Saikatendu, K.S.2
Subramanian, V.3
Neuman, B.W.4
Buchmeier, M.J.5
Stevens, R.C.6
Kuhn, P.7
-
42
-
-
84863860676
-
Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex
-
COI: 1:CAS:528:DC%2BC38XoslGks7g%3D, PID: 22659295
-
Ke M, Chen Y, Wu A, Sun Y, Su C, Wu H, Jin X, Tao J, Wang Y, Ma X, Pan JA, Guo D. 2012. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res, 167: 322–328.
-
(2012)
Virus Res
, vol.167
, pp. 322-328
-
-
Ke, M.1
Chen, Y.2
Wu, A.3
Sun, Y.4
Su, C.5
Wu, H.6
Jin, X.7
Tao, J.8
Wang, Y.9
Ma, X.10
Pan, J.A.11
Guo, D.12
-
43
-
-
0020024485
-
Further characterization of mRNA′s of mouse hepatitis virus: presence of common 5′- end nucleotides
-
COI: 1:CAS:528:DyaL38XpvVKhuw%3D%3D, PID: 6281467
-
Lai MM, Patton CD, Stohlman SA. 1982. Further characterization of mRNA′s of mouse hepatitis virus: presence of common 5′- end nucleotides. J Virol, 41: 557–565.
-
(1982)
J Virol
, vol.41
, pp. 557-565
-
-
Lai, M.M.1
Patton, C.D.2
Stohlman, S.A.3
-
44
-
-
0019503319
-
Comparative analysis of RNA genomes of mouse hepatitis viruses
-
COI: 1:CAS:528:DyaL3MXitVGgsrw%3D, PID: 6165837
-
Lai MM, Stohlman SA. 1981. Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol, 38: 661–670.
-
(1981)
J Virol
, vol.38
, pp. 661-670
-
-
Lai, M.M.1
Stohlman, S.A.2
-
45
-
-
0030879809
-
In vitro polymerase activity of Thogoto virus: evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus
-
COI: 1:CAS:528:DyaK2sXmvV2hsrs%3D, PID: 9343188
-
Leahy MB, Dessens JT, Nuttall PA. 1997. In vitro polymerase activity of Thogoto virus: evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus. J Virol, 71: 8347–8351.
-
(1997)
J Virol
, vol.71
, pp. 8347-8351
-
-
Leahy, M.B.1
Dessens, J.T.2
Nuttall, P.A.3
-
46
-
-
27344438916
-
Bats are natural reservoirs of SARS-like coronaviruses
-
COI: 1:CAS:528:DC%2BD2MXhtFChsLjO, PID: 16195424
-
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310: 676–679.
-
(2005)
Science
, vol.310
, pp. 676-679
-
-
Li, W.1
Shi, Z.2
Yu, M.3
Ren, W.4
Smith, C.5
Epstein, J.H.6
Wang, H.7
Crameri, G.8
Hu, Z.9
Zhang, H.10
Zhang, J.11
McEachern, J.12
Field, H.13
Daszak, P.14
Eaton, B.T.15
Zhang, S.16
Wang, L.F.17
-
47
-
-
32544441936
-
Decapping the message: a beginning or an end
-
PID: 16246173
-
Liu H, Kiledjian M. 2006. Decapping the message: a beginning or an end. Biochem Soc Trans, 34: 35–38.
-
(2006)
Biochem Soc Trans
, vol.34
, pp. 35-38
-
-
Liu, H.1
Kiledjian, M.2
-
48
-
-
84938086703
-
Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex
-
COI: 1:CAS:528:DC%2BC2MXhtFGkt7vJ, PID: 26159422
-
Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. 2015. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA, 112: 9436–9441.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 9436-9441
-
-
Ma, Y.1
Wu, L.2
Shaw, N.3
Gao, Y.4
Wang, J.5
Sun, Y.6
Lou, Z.7
Yan, L.8
Zhang, R.9
Rao, Z.10
-
49
-
-
0028088458
-
Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer
-
COI: 1:CAS:528:DyaK2cXlvF2ntrw%3D, PID: 7929111
-
Mao X, Shuman S. 1994. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem, 269: 24472–24479.
-
(1994)
J Biol Chem
, vol.269
, pp. 24472-24479
-
-
Mao, X.1
Shuman, S.2
-
50
-
-
0242401838
-
Virology: SARS virus infection of cats and ferrets
-
COI: 1:CAS:528:DC%2BD3sXosVOhtr0%3D, PID: 14586458
-
Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, van Amerongen G, Peiris JS, Lim W, Osterhaus AD. 2003. Virology: SARS virus infection of cats and ferrets. Nature, 425: 915.
-
(2003)
Nature
, vol.425
, pp. 915
-
-
Martina, B.E.1
Haagmans, B.L.2
Kuiken, T.3
Fouchier, R.A.4
Rimmelzwaan, G.F.5
van Amerongen, G.6
Peiris, J.S.7
Lim, W.8
Osterhaus, A.D.9
-
51
-
-
84861054595
-
Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs
-
PID: 22536116
-
Martinez-Salas E, Pineiro D, Fernandez N. 2012. Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics, 2012: 391546.
-
(2012)
Comp Funct Genomics
, vol.2012
, pp. 391546
-
-
Martinez-Salas, E.1
Pineiro, D.2
Fernandez, N.3
-
52
-
-
33645518839
-
Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis
-
COI: 1:CAS:528:DC%2BD28XjsVGltr0%3D, PID: 16549795
-
Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, Ziebuhr J. 2006. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A, 103: 5108–5113.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 5108-5113
-
-
Minskaia, E.1
Hertzig, T.2
Gorbalenya, A.E.3
Campanacci, V.4
Cambillau, C.5
Canard, B.6
Ziebuhr, J.7
-
53
-
-
84927173222
-
A novel coronavirus, MERS-CoV
-
PID: 24769571
-
Mizutani T. 2013. A novel coronavirus, MERS-CoV. Uirusu, 63: 1–6. (In Japanese)
-
(2013)
Uirusu
, vol.63
, pp. 1-6
-
-
Mizutani, T.1
-
54
-
-
85011936098
-
A brilliant disguise for self RNA: 5′-end and internal modifications of primary transcripts suppress elements of innate immunity
-
COI: 1:CAS:528:DC%2BD1cXht1Gls7vE, PID: 18769134
-
Nallagatla SR, Toroney R, Bevilacqua PC. 2008. A brilliant disguise for self RNA: 5′-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol, 5: 140–144.
-
(2008)
RNA Biol
, vol.5
, pp. 140-144
-
-
Nallagatla, S.R.1
Toroney, R.2
Bevilacqua, P.C.3
-
55
-
-
33845992557
-
Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus
-
COI: 1:CAS:528:DC%2BD2sXhtFSnurw%3D, PID: 17218273
-
Ogino T, Banerjee AK. 2007. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell, 25: 85–97.
-
(2007)
Mol Cell
, vol.25
, pp. 85-97
-
-
Ogino, T.1
Banerjee, A.K.2
-
56
-
-
53249097514
-
Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication
-
PID: 18827877
-
Pan J, Peng X, Gao Y, Li Z, Lu X, Chen Y, Ishaq M, Liu D, Dediego ML, Enjuanes L, Guo D. 2008. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One, 3: e3299.
-
(2008)
PLoS One
, vol.3
, pp. 3299
-
-
Pan, J.1
Peng, X.2
Gao, Y.3
Li, Z.4
Lu, X.5
Chen, Y.6
Ishaq, M.7
Liu, D.8
Dediego, M.L.9
Enjuanes, L.10
Guo, D.11
-
57
-
-
0023720048
-
Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA
-
COI: 1:CAS:528:DyaL1cXls1GrsLg%3D, PID: 2839775
-
Pelletier J, Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334: 320–325.
-
(1988)
Nature
, vol.334
, pp. 320-325
-
-
Pelletier, J.1
Sonenberg, N.2
-
58
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates
-
COI: 1:CAS:528:DC%2BD28XhtFyqtLbM, PID: 17038589
-
Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 314: 997–1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Naslund, T.I.4
Liljestrom, P.5
Weber, F.R.6
Sousa, C.7
-
59
-
-
4444246734
-
Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins
-
COI: 1:CAS:528:DC%2BD2cXnvVarsLs%3D, PID: 15331731
-
Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. 2004. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol, 78: 9977–9986.
-
(2004)
J Virol
, vol.78
, pp. 9977-9986
-
-
Prentice, E.1
McAuliffe, J.2
Lu, X.3
Subbarao, K.4
Denison, M.R.5
-
60
-
-
33748669852
-
West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5
-
COI: 1:CAS:528:DC%2BD28XovVOjtrw%3D, PID: 16912287
-
Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas TS, Zhou Y, Li H, Shi PY. 2006. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol, 80: 8362–8370.
-
(2006)
J Virol
, vol.80
, pp. 8362-8370
-
-
Ray, D.1
Shah, A.2
Tilgner, M.3
Guo, Y.4
Zhao, Y.5
Dong, H.6
Deas, T.S.7
Zhou, Y.8
Li, H.9
Shi, P.Y.10
-
61
-
-
75749140581
-
RIG-I detects viral genomic RNA during negative-strand RNA virus infection
-
COI: 1:CAS:528:DC%2BC3cXlt1Klsbg%3D, PID: 20144762
-
Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 140: 397–408.
-
(2010)
Cell
, vol.140
, pp. 397-408
-
-
Rehwinkel, J.1
Tan, C.P.2
Goubau, D.3
Schulz, O.4
Pichlmair, A.5
Bier, K.6
Robb, N.7
Vreede, F.8
Barclay, W.9
Fodor, E.R.10
Sousa, C.11
-
62
-
-
0033522898
-
Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes
-
COI: 1:CAS:528:DyaK1MXjs1OntL0%3D, PID: 10347220
-
Saha N, Schwer B, Shuman S. 1999. Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J Biol Chem, 274: 16553–16562.
-
(1999)
J Biol Chem
, vol.274
, pp. 16553-16562
-
-
Saha, N.1
Schwer, B.2
Shuman, S.3
-
63
-
-
0038339628
-
Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase
-
COI: 1:CAS:528:DC%2BD3sXkvV2qtbo%3D, PID: 12805428
-
Saha N, Shuman S, Schwer B. 2003. Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase. J Virol, 77: 7300–7307.
-
(2003)
J Virol
, vol.77
, pp. 7300-7307
-
-
Saha, N.1
Shuman, S.2
Schwer, B.3
-
64
-
-
33744794434
-
Functional and genetic analysis of coronavirus replicase-transcriptase proteins
-
PID: 16341254
-
Sawicki SG, Sawicki DL, Younker D, Meyer Y, Thiel V, Stokes H, Siddell SG. 2005. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog, 1: e39.
-
(2005)
PLoS Pathog
, vol.1
, pp. 39
-
-
Sawicki, S.G.1
Sawicki, D.L.2
Younker, D.3
Meyer, Y.4
Thiel, V.5
Stokes, H.6
Siddell, S.G.7
-
65
-
-
0035910568
-
Characterization of the mRNA capping apparatus of Candida albicans
-
COI: 1:CAS:528:DC%2BD3MXotVCiuw%3D%3D, PID: 11035009
-
Schwer B, Lehman K, Saha N, Shuman S. 2001. Characterization of the mRNA capping apparatus of Candida albicans. J Biol Chem, 276: 1857–1864.
-
(2001)
J Biol Chem
, vol.276
, pp. 1857-1864
-
-
Schwer, B.1
Lehman, K.2
Saha, N.3
Shuman, S.4
-
66
-
-
0032077454
-
Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme
-
COI: 1:CAS:528:DyaK1cXjtFymtb4%3D, PID: 9547258
-
Schwer B, Mao X, Shuman S. 1998. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res, 26: 2050–2057.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 2050-2057
-
-
Schwer, B.1
Mao, X.2
Shuman, S.3
-
67
-
-
84920567563
-
Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus
-
COI: 1:CAS:528:DC%2BC2cXhsl2ltrzK, PID: 25451065
-
Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. 2014. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res, 194: 90–99.
-
(2014)
Virus Res
, vol.194
, pp. 90-99
-
-
Sevajol, M.1
Subissi, L.2
Decroly, E.3
Canard, B.4
Imbert, I.5
-
68
-
-
0017224213
-
Capping of eucaryotic mRNAs
-
COI: 1:CAS:528:DyaE2sXhtFKisro%3D, PID: 1017010
-
Shatkin AJ. 1976. Capping of eucaryotic mRNAs. Cell, 9: 645–653.
-
(1976)
Cell
, vol.9
, pp. 645-653
-
-
Shatkin, A.J.1
-
69
-
-
0035201941
-
Structure, mechanism, and evolution of the mRNA capping apparatus
-
COI: 1:STN:280:DC%2BD3crgsVantg%3D%3D, PID: 11051760
-
Shuman S. 2001. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol, 66: 1–40.
-
(2001)
Prog Nucleic Acid Res Mol Biol
, vol.66
, pp. 1-40
-
-
Shuman, S.1
-
70
-
-
84883438898
-
Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics
-
COI: 1:CAS:528:DC%2BC3sXhsVChs73K, PID: 23966862
-
Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. 2013. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog, 9: e1003565.
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003565
-
-
Smith, E.C.1
Blanc, H.2
Surdel, M.C.3
Vignuzzi, M.4
Denison, M.R.5
-
71
-
-
84929603486
-
Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity
-
COI: 1:CAS:528:DC%2BC2MXpsFCqs70%3D, PID: 25855750
-
Smith EC, Case JB, Blanc H, Isakov O, Shomron N, Vignuzzi M, Denison MR. 2015. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol, 89: 6418–6426.
-
(2015)
J Virol
, vol.89
, pp. 6418-6426
-
-
Smith, E.C.1
Case, J.B.2
Blanc, H.3
Isakov, O.4
Shomron, N.5
Vignuzzi, M.6
Denison, M.R.7
-
72
-
-
0042164218
-
Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage
-
COI: 1:CAS:528:DC%2BD3sXmsVCls7w%3D, PID: 12927536
-
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 331: 991–1004.
-
(2003)
J Mol Biol
, vol.331
, pp. 991-1004
-
-
Snijder, E.J.1
Bredenbeek, P.J.2
Dobbe, J.C.3
Thiel, V.4
Ziebuhr, J.5
Poon, L.L.6
Guan, Y.7
Rozanov, M.8
Spaan, W.J.9
Gorbalenya, A.E.10
-
73
-
-
84896721871
-
Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine- N7-methyltransferase
-
COI: 1:CAS:528:DC%2BC2cXjsVKltbY%3D, PID: 24530452
-
Sun Y, Wang Z, Tao J, Wang Y, Wu A, Yang Z, Wang K, Shi L, Chen Y, Guo D. 2014. Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine- N7-methyltransferase. Antiviral Res, 104: 156–164.
-
(2014)
Antiviral Res
, vol.104
, pp. 156-164
-
-
Sun, Y.1
Wang, Z.2
Tao, J.3
Wang, Y.4
Wu, A.5
Yang, Z.6
Wang, K.7
Shi, L.8
Chen, Y.9
Guo, D.10
-
74
-
-
0141960168
-
The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases
-
COI: 1:CAS:528:DC%2BD3sXnvFantLc%3D, PID: 12917423
-
Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, Poon LL, Kung HF, Huang JD. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem, 278: 39578–39582.
-
(2003)
J Biol Chem
, vol.278
, pp. 39578-39582
-
-
Tanner, J.A.1
Watt, R.M.2
Chai, Y.B.3
Lu, L.Y.4
Lin, M.C.5
Peiris, J.S.6
Poon, L.L.7
Kung, H.F.8
Huang, J.D.9
-
75
-
-
84857837587
-
The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension
-
COI: 1:CAS:528:DC%2BC38XjtlGksb4%3D, PID: 22039154
-
te Velthuis AJ, van den Worm SH, Snijder EJ. 2012. The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res, 40: 1737–1747.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 1737-1747
-
-
te Velthuis, A.J.1
van den Worm, S.H.2
Snijder, E.J.3
-
76
-
-
0042377358
-
Mechanisms and enzymes involved in SARS coronavirus genome expression
-
COI: 1:CAS:528:DC%2BD3sXntFaqsb4%3D, PID: 12917450
-
Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol, 84: 2305–2315.
-
(2003)
J Gen Virol
, vol.84
, pp. 2305-2315
-
-
Thiel, V.1
Ivanov, K.A.2
Putics, A.3
Hertzig, T.4
Schelle, B.5
Bayer, S.6
Weissbrich, B.7
Snijder, E.J.8
Rabenau, H.9
Doerr, H.W.10
Gorbalenya, A.E.11
Ziebuhr, J.12
-
77
-
-
0026513651
-
Internal ribosome entry site within hepatitis C virus RNA
-
COI: 1:CAS:528:DyaK38Xhs1yntLw%3D, PID: 1310759
-
Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. 1992. Internal ribosome entry site within hepatitis C virus RNA. J Virol, 66: 1476–1483.
-
(1992)
J Virol
, vol.66
, pp. 1476-1483
-
-
Tsukiyama-Kohara, K.1
Iizuka, N.2
Kohara, M.3
Nomoto, A.4
-
78
-
-
0037011138
-
Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus
-
COI: 1:CAS:528:DC%2BD38XpsFChtL8%3D, PID: 12456663
-
van Vliet AL, Smits SL, Rottier PJ, de Groot RJ. 2002. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. Embo J, 21: 6571–6580.
-
(2002)
Embo J
, vol.21
, pp. 6571-6580
-
-
van Vliet, A.L.1
Smits, S.L.2
Rottier, P.J.3
de Groot, R.J.4
-
79
-
-
0038681984
-
mRNA cap-1 methyltransferase in the SARS genome
-
COI: 1:CAS:528:DC%2BD3sXkvVekt7s%3D, PID: 12809601
-
von Grotthuss M, Wyrwicz LS, Rychlewski L. 2003. mRNA cap-1 methyltransferase in the SARS genome. Cell, 113: 701–702.
-
(2003)
Cell
, vol.113
, pp. 701-702
-
-
von Grotthuss, M.1
Wyrwicz, L.S.2
Rychlewski, L.3
-
80
-
-
33845459178
-
Review of bats and SARS
-
COI: 1:CAS:528:DC%2BD2sXhtFCksw%3D%3D, PID: 17326933
-
Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. 2006. Review of bats and SARS. Emerg Infect Dis, 12: 1834–1840.
-
(2006)
Emerg Infect Dis
, vol.12
, pp. 1834-1840
-
-
Wang, L.F.1
Shi, Z.2
Zhang, S.3
Field, H.4
Daszak, P.5
Eaton, B.T.6
-
81
-
-
84938057765
-
Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis
-
COI: 1:CAS:528:DC%2BC2MXht12htr3L, PID: 26041293
-
Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D. 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol, 89: 8416–8427.
-
(2015)
J Virol
, vol.89
, pp. 8416-8427
-
-
Wang, Y.1
Sun, Y.2
Wu, A.3
Xu, S.4
Pan, R.5
Zeng, C.6
Jin, X.7
Ge, X.8
Shi, Z.9
Ahola, T.10
Chen, Y.11
Guo, D.12
-
82
-
-
0028876739
-
The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine
-
COI: 1:CAS:528:DyaK2MXjtlOqsbs%3D, PID: 7754678
-
Woyciniuk P, Linder M, Scholtissek C. 1995. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res, 35: 91–99.
-
(1995)
Virus Res
, vol.35
, pp. 91-99
-
-
Woyciniuk, P.1
Linder, M.2
Scholtissek, C.3
-
83
-
-
4143122124
-
Molecular biology of severe acute respiratory syndrome coronavirus
-
COI: 1:CAS:528:DC%2BD2cXmt1Omt7g%3D, PID: 15358261
-
Ziebuhr J. 2004. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol, 7: 412–419.
-
(2004)
Curr Opin Microbiol
, vol.7
, pp. 412-419
-
-
Ziebuhr, J.1
-
84
-
-
0347319103
-
Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis
-
COI: 1:CAS:528:DC%2BD2cXjvFehtg%3D%3D, PID: 14694129
-
Zuniga S, Sola I, Alonso S, Enjuanes L. 2004. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol, 78: 980–994.
-
(2004)
J Virol
, vol.78
, pp. 980-994
-
-
Zuniga, S.1
Sola, I.2
Alonso, S.3
Enjuanes, L.4
-
85
-
-
78751637122
-
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
-
PID: 21217758
-
Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12: 137–143.
-
(2011)
Nat Immunol
, vol.12
, pp. 137-143
-
-
Zust, R.1
Cervantes-Barragan, L.2
Habjan, M.3
Maier, R.4
Neuman, B.W.5
Ziebuhr, J.6
Szretter, K.J.7
Baker, S.C.8
Barchet, W.9
Diamond, M.S.10
Siddell, S.G.11
Ludewig, B.12
Thiel, V.13
|