메뉴 건너뛰기




Volumn 72, Issue 9, 2016, Pages 3489-3510

Real time intrusion detection system for ultra-high-speed big data environments

Author keywords

Big data; Intrusion detection; Machine learning; Network; Threats

Indexed keywords

ARTIFICIAL INTELLIGENCE; BEHAVIORAL RESEARCH; CLASSIFICATION (OF INFORMATION); COMPUTER ARCHITECTURE; COMPUTER CRIME; DECISION MAKING; DECISION TREES; EFFICIENCY; INTRUSION DETECTION; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NETWORK SECURITY; NETWORKS (CIRCUITS); SPEED;

EID: 84959102038     PISSN: 09208542     EISSN: 15730484     Source Type: Journal    
DOI: 10.1007/s11227-015-1615-5     Document Type: Article
Times cited : (106)

References (43)
  • 1
    • 0022582348 scopus 로고
    • An intrusion-detection model. In: IEEE computer society Symposium on research security and privacy
    • Denning D (1986) An intrusion-detection model. In: IEEE computer society Symposium on research security and privacy, pp 118–131
    • (1986) pp 118–131
    • Denning, D.1
  • 2
    • 0023294428 scopus 로고
    • An intrusion-detection model
    • Denning DE (1987) An intrusion-detection model. IEEE Trans Softw Eng 13(2):222–232. doi:10.1109/TSE.1987.232894
    • (1987) IEEE Trans Softw Eng , vol.13 , Issue.2 , pp. 222-232
    • Denning, D.E.1
  • 3
    • 84894652457 scopus 로고    scopus 로고
    • A survey of intrusion detection systems in wireless sensor networks
    • Butun I, Morgera SD, Sankar R (2014) A survey of intrusion detection systems in wireless sensor networks. IEEE Commun Surv Tutor 16(1):266–282
    • (2014) IEEE Commun Surv Tutor , vol.16 , Issue.1 , pp. 266-282
    • Butun, I.1    Morgera, S.D.2    Sankar, R.3
  • 5
    • 0041473688 scopus 로고    scopus 로고
    • Intrusion detection techniques for mobile wireless networks
    • Zhang Y, Lee W, Huang YA (2003) Intrusion detection techniques for mobile wireless networks. J Wirel Netw 9(5):545–556
    • (2003) J Wirel Netw , vol.9 , Issue.5 , pp. 545-556
    • Zhang, Y.1    Lee, W.2    Huang, Y.A.3
  • 6
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solutions and latest technological trends
    • Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Elsevier J Comput Netw 51(12):3448–3470
    • (2007) Elsevier J Comput Netw , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2
  • 7
    • 33750284332 scopus 로고    scopus 로고
    • Puttini R, Hanashiro M, Miziara F, de Sousa R, Garcia-Villalba L, Barenco C(2006) On the anomaly intrusion-detection in mobile ad hoc network environments. In: Proc. 11th IFIP TC6 international conference on personal wireless communications. Springer, pp 182–193
    • Puttini R, Hanashiro M, Miziara F, de Sousa R, Garcia-Villalba L, Barenco C(2006) On the anomaly intrusion-detection in mobile ad hoc network environments. In: Proc. 11th IFIP TC6 international conference on personal wireless communications. Springer, pp 182–193
  • 9
    • 84991930356 scopus 로고    scopus 로고
    • ofcom (2013) Communications market report 2013 [Online].
    • ofcom (2013) Communications market report 2013 [Online]. http://www.ofcom.org.uk/cmruk/
  • 14
    • 76249131363 scopus 로고    scopus 로고
    • Selecting features for intrusion detection: a feature relevance analysis on kdd99 intrusion detection datasets
    • Proceedings of the third annual conference on privacy, security and trust, Citeseer
    • Kayacik HG, Zincir-Heywood AN, Heywood MI (2005) Selecting features for intrusion detection: a feature relevance analysis on kdd99 intrusion detection datasets. In: Proceedings of the third annual conference on privacy, security and trust, Citeseer
    • (2005) In
    • Kayacik, H.G.1    Zincir-Heywood, A.N.2    Heywood, M.I.3
  • 15
    • 77954556689 scopus 로고    scopus 로고
    • Identifying important characteristics in the kdd99 intrusion detection dataset by feature selection using a hybrid approach. In: IEEE 17th international conference on telecommunications (ICT), pp 552–558
    • Araujo N, de Oliveira R, Ferreira E-W, Shinoda A, Bhargava B (2010) Identifying important characteristics in the kdd99 intrusion detection dataset by feature selection using a hybrid approach. In: IEEE 17th international conference on telecommunications (ICT), pp 552–558. IEEE
    • (2010) IEEE
    • Araujo, N.1    de Oliveira, R.2    Ferreira, E.-W.3    Shinoda, A.4    Bhargava, B.5
  • 16
    • 34748822627 scopus 로고    scopus 로고
    • Analysis of three intrusion detection system benchmark datasets using machine learning algorithms
    • Springer-Verlag, Berlin, Heidelberg
    • Kantor P, Muresan G, Roberts F et al (2005) Analysis of three intrusion detection system benchmark datasets using machine learning algorithms. In: Intelligence and security informatics, sec. 3, p 363. Springer-Verlag, Berlin, Heidelberg
    • (2005) Intelligence and security informatics, sec. 3 , pp. 363
    • Kantor, P.1    Muresan, G.2    Roberts, F.3
  • 17
    • 78650634152 scopus 로고    scopus 로고
    • Efficient decision tree for protocol analysis in intrusion detection
    • Abbes T, Bouhoula A, Rusinowitch M (2010) Efficient decision tree for protocol analysis in intrusion detection. Int J Secur Netw 5(4):220–235
    • (2010) Int J Secur Netw , vol.5 , Issue.4 , pp. 220-235
    • Abbes, T.1    Bouhoula, A.2    Rusinowitch, M.3
  • 19
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • Khan L, Awad M, Thuraisingham B (2007) A new intrusion detection system using support vector machines and hierarchical clustering. VLDB J 16(4):507–521
    • (2007) VLDB J , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 21
    • 78651378423 scopus 로고    scopus 로고
    • A K-means and naive bayes learning approach for better intrusion detection
    • Muda Z, Yassin W, Sulaiman MN, Udzir NI (2011) A K-means and naive bayes learning approach for better intrusion detection. Inf Technol J 10(3):648–655
    • (2011) Inf Technol J , vol.10 , Issue.3 , pp. 648-655
    • Muda, Z.1    Yassin, W.2    Sulaiman, M.N.3    Udzir, N.I.4
  • 22
    • 33847704184 scopus 로고    scopus 로고
    • K-Means+ID3: a novel method for supervised anomaly detection by cascading kmeans clustering and ID3 decision tree learning methods
    • Gaddam SR, Phoha VV, Balagani KS (2007) K-Means+ID3: a novel method for supervised anomaly detection by cascading kmeans clustering and ID3 decision tree learning methods. IEEE Trans Knowl Data Eng 19(3):345–354
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.3 , pp. 345-354
    • Gaddam, S.R.1    Phoha, V.V.2    Balagani, K.S.3
  • 23
    • 0036588773 scopus 로고    scopus 로고
    • Incorporating soft computing techniques into a probabilistic intrusion detection ystem
    • Cho SB (2002) Incorporating soft computing techniques into a probabilistic intrusion detection ystem. Syst Man Cybern Part C Appl Rev IEEE Trans 32(2):154–160
    • (2002) Syst Man Cybern Part C Appl Rev IEEE Trans , vol.32 , Issue.2 , pp. 154-160
    • Cho, S.B.1
  • 25
    • 32144435943 scopus 로고    scopus 로고
    • Decentralized intrusion detection in wireless sensor networks. In: Proc. 1st ACM International workshop on quality of service and security in wireless and mobile networks (Q2SWinet ’05), pp 16–23
    • da Silva AP, Martins M, Rocha B, Loureiro A, Ruiz L, Wong HC (2005) Decentralized intrusion detection in wireless sensor networks. In: Proc. 1st ACM International workshop on quality of service and security in wireless and mobile networks (Q2SWinet ’05), pp 16–23. ACM Press
    • (2005) ACM Press
    • da Silva, A.P.1    Martins, M.2    Rocha, B.3    Loureiro, A.4    Ruiz, L.5    Wong, H.C.6
  • 26
    • 84991922164 scopus 로고    scopus 로고
    • Intrusion detection in wireless ad-hoc networks. CS4274, Introduction to Mobile Computing, term paper, School of Computing
    • Wai FH, Aye YN, James NH (2005) Intrusion detection in wireless ad-hoc networks. CS4274, Introduction to Mobile Computing, term paper, School of Computing, National University of Singapore
    • (2005) National University of Singapore
    • Wai, F.H.1    Aye, Y.N.2    James, N.H.3
  • 28
    • 79951649381 scopus 로고    scopus 로고
    • Network intrusion detection system embedded on a smart sensor
    • Francisco M-P et al (2011) Network intrusion detection system embedded on a smart sensor. Ind Electron IEEE Trans 58(3):722–732
    • (2011) Ind Electron IEEE Trans , vol.58 , Issue.3 , pp. 722-732
    • Francisco, M.-P.1
  • 30
    • 77954310491 scopus 로고    scopus 로고
    • Impact of feature reduction on the efficiency of wireless intrusion detection systems
    • El-Khatib K (2010) Impact of feature reduction on the efficiency of wireless intrusion detection systems. Parallel Distrib Syst IEEE Trans 21(8):1143–1149
    • (2010) Parallel Distrib Syst IEEE Trans , vol.21 , Issue.8 , pp. 1143-1149
    • El-Khatib, K.1
  • 33
    • 84899026555 scopus 로고    scopus 로고
    • Big data analysis system concept for detecting unknown attacks. In: Advanced communication technology (ICACT), 2014 16th International Conference on, 16–19 Feb 2014, pp 269–272
    • Ahn S-H, Kim N-U, Chung T-M (2014) Big data analysis system concept for detecting unknown attacks. In: Advanced communication technology (ICACT), 2014 16th International Conference on, 16–19 Feb 2014, pp 269–272. doi:10.1109/ICACT.2014.6778962
    • (2014) doi:10.1109/ICACT.2014.6778962
    • Ahn, S.-H.1    Kim, N.-U.2    Chung, T.-M.3
  • 34
    • 84923911158 scopus 로고    scopus 로고
    • A Big data architecture for large scale security monitoring. In: Big data (BigData Congress), 2014 IEEE international congress on, June 27 2014–July 2 2014, pp 56–63
    • Marchal S, Jiang X, State R, Engel T (2014) A Big data architecture for large scale security monitoring. In: Big data (BigData Congress), 2014 IEEE international congress on, June 27 2014–July 2 2014, pp 56–63. doi:10.1109/BigData.Congress.2014.18
    • (2014) doi:10.1109/BigData.Congress.2014.18
    • Marchal, S.1    Jiang, X.2    State, R.3    Engel, T.4
  • 35
    • 84991918665 scopus 로고    scopus 로고
    • I.S.T.G. MIT Lincoln Lab (2000) DARPA intrusion detection data sets.
    • I.S.T.G. MIT Lincoln Lab (2000) DARPA intrusion detection data sets. http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/2000data.html
  • 36
    • 84991994644 scopus 로고    scopus 로고
    • KDDcup99 (1999) Knowledge discovery in databases DARPA archive.
    • KDDcup99 (1999) Knowledge discovery in databases DARPA archive. http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
  • 37
    • 84991922171 scopus 로고    scopus 로고
    • NSL-KDD (2009) NSL-KDD data set for network-based intrusion detection systems.
    • NSL-KDD (2009) NSL-KDD data set for network-based intrusion detection systems. http://iscx.cs.unb.ca/NSL-KDD/
  • 38
    • 84988385241 scopus 로고    scopus 로고
    • Machine-learning-based feature selection techniques for large-scale network intrusion detection. In: Distributed computing systems workshops (ICDCSW), 2014 IEEE 34th international conference on
    • Al-Jarrah OY et al (2014) Machine-learning-based feature selection techniques for large-scale network intrusion detection. In: Distributed computing systems workshops (ICDCSW), 2014 IEEE 34th international conference on. IEEE
    • (2014) IEEE
    • Al-Jarrah, O.Y.1
  • 40
    • 63749126820 scopus 로고    scopus 로고
    • Features selection for intrusion detection systems based on support vector machines. In: Consumer communications and networking conference, 2009. CCNC 2009. 6th IEEE
    • Zaman S, Karray F (2009) Features selection for intrusion detection systems based on support vector machines. In: Consumer communications and networking conference, 2009. CCNC 2009. 6th IEEE, pp 1–8
    • (2009) pp 1–8
    • Zaman, S.1    Karray, F.2
  • 41
    • 84906743138 scopus 로고    scopus 로고
    • High speed network traffic analysis with commodity multi-core systems
    • Fusco F, Deri L (2010) High speed network traffic analysis with commodity multi-core systems. ACM IMC 2010
    • (2010) ACM IMC , pp. 2010
    • Fusco, F.1    Deri, L.2
  • 42
    • 84929598456 scopus 로고    scopus 로고
    • Real-Time Big Data Analytical Architecture for Remote Sensing Application. Sel Top Appli Earth Observations Remote Sens
    • Rathore MMU, Paul A, Ahmad A, Chen B, Huang B, Ji W (2015) Real-Time Big Data Analytical Architecture for Remote Sensing Application. Sel Top Appli Earth Observations Remote Sens, IEEE J 8(10):4610–4621. doi:10.1109/JSTARS.2015.2424683
    • (2015) IEEE J , vol.8 , Issue.10 , pp. 4610-4621
    • Rathore, M.M.U.1    Paul, A.2    Ahmad, A.3    Chen, B.4    Huang, B.5    Ji, W.6
  • 43
    • 84945582178 scopus 로고    scopus 로고
    • An efficient divide-and-conquer approach for big data analytics in machine-to-machine communication
    • Ahmad A, Paul A, Rathore MM (2016) An efficient divide-and-conquer approach for big data analytics in machine-to-machine communication. Neurocomputing 174:439–453
    • (2016) Neurocomputing , vol.174 , pp. 439-453
    • Ahmad, A.1    Paul, A.2    Rathore, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.