메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 6-10

Architectures for deep neural network based acoustic models defined over windowed speech waveforms

Author keywords

Bottleneck features; Deep Neural Networks; Speech Recognition; Waveform Speech

Indexed keywords

NETWORK ARCHITECTURE; SPEECH; SPEECH COMMUNICATION;

EID: 84959098603     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (13)
  • 1
    • 84906273908 scopus 로고    scopus 로고
    • Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks
    • Lyon, France, Aug.
    • D. Palaz, R. Collobert, and M. Magimai.-Doss, "Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks, " in Proc. Interspeech, Lyon, France, Aug. 2013, pp. 1766-1770.
    • (2013) Proc. Interspeech , pp. 1766-1770
    • Palaz, D.1    Collobert, R.2    Magimai.-Doss, M.3
  • 2
    • 84910065702 scopus 로고    scopus 로고
    • Acoustic modeling with deep neural networks using raw time signal for LVSCR
    • Singapore, Sept.
    • Z. Tüske, P. Golik, R. Schlüter, and H. Ney, "Acoustic modeling with deep neural networks using raw time signal for LVSCR, " in Interspeech, Singapore, Sept. 2014, pp. 890-894.
    • (2014) Interspeech , pp. 890-894
    • Tüske, Z.1    Golik, P.2    Schlüter, R.3    Ney, H.4
  • 3
    • 84959102679 scopus 로고    scopus 로고
    • Speech acoustic modelling in raw multichannel waveforms
    • Hoshen, Yedid, Ron J. Weiss, and Kevin W. Wilson. "Speech acoustic modelling in raw multichannel waveforms. " in Proc. ICASSP, 2015.
    • (2015) Proc. ICASSP
    • Hoshen, Y.1    Weiss, R.J.2    Wilson, K.W.3
  • 4
    • 0022548705 scopus 로고
    • On the role of spectral transition for speech perception
    • S. Furui, "On the role of spectral transition for speech perception", J. Acoust. Soc. Am Vol. 80, No. 4, pp. 1016-1025, 1986.
    • (1986) J. Acoust. Soc. Am , vol.80 , Issue.4 , pp. 1016-1025
    • Furui, S.1
  • 6
    • 84867585919 scopus 로고    scopus 로고
    • Understanding how deep belief networks perform acoustic modelling
    • A. Mohamed, G. Hinton, and G. Penn, "Understanding how deep belief networks perform acoustic modelling, " in ICASSP, 2012.
    • (2012) ICASSP
    • Mohamed, A.1    Hinton, G.2    Penn, G.3
  • 7
    • 84865785753 scopus 로고    scopus 로고
    • Improved bottleneck features using pretrained deep neural networks
    • D. Yu and M. L. Seltzer, "Improved bottleneck features using pretrained deep neural networks", in Proc. Interspeech 2011, pp. 237-240.
    • (2011) Proc. Interspeech , pp. 237-240
    • Yu, D.1    Seltzer, M.L.2
  • 8
    • 0012330750 scopus 로고
    • The design for the wall street journal-based csr corpus
    • Association for Computational Linguistics
    • D. B. Paul and J. M. Baker, "The design for the Wall Street Journal-based CSR corpus, " in Proceedings of the workshop on Speech and Natural Language. Association for Computational Linguistics, 1992, pp. 357362.
    • (1992) Proceedings of the Workshop on Speech and Natural Language , pp. 357362
    • Paul, D.B.1    Baker, J.M.2
  • 9
    • 84858953642 scopus 로고    scopus 로고
    • The kaldi speech recognition toolkit
    • D. Povey, A. Ghoshal, et al., "The kaldi speech recognition toolkit, " in Proc. ASRU, 2011
    • (2011) Proc. ASRU
    • Povey, D.1    Ghoshal, A.2
  • 10
    • 51449103447 scopus 로고    scopus 로고
    • Optimizing bottle-neck features for LVCSR
    • F. Grézl and P. Fousek, "Optimizing bottle-neck features for LVCSR, " in Proc. ICASSP, 2008
    • (2008) Proc. ICASSP
    • Grézl, F.1    Fousek, P.2
  • 11
    • 79959811995 scopus 로고    scopus 로고
    • Hierarchical neural net architectures for feature extraction in ASR
    • F. Grézl and M. Karafiát, "Hierarchical neural net architectures for feature extraction in ASR, " in Proc. INTERSPEECH, 2010, pp. 1201-1204.
    • (2010) Proc. INTERSPEECH , pp. 1201-1204
    • Grézl, F.1    Karafiát, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.