-
2
-
-
0039592729
-
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
-
Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1-20 (2000).
-
(2000)
Physica D
, vol.143
, pp. 1-20
-
-
Strogatz, S.H.1
-
3
-
-
0003594964
-
-
Cambridge University Press, Cambridge, England
-
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a Universal Concept in Nonlinear Sciences. pp. 279-296 (Cambridge University Press, Cambridge, England, 2001).
-
(2001)
Synchronization: A Universal Concept in Nonlinear Sciences
, pp. 279-296
-
-
Pikovsky, A.1
Rosenblum, M.2
Kurths, J.3
-
4
-
-
56549084695
-
Synchronization in complex networks
-
Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou. C. Synchronization in complex networks. Phys. Rep. 469, 93-153 (2008).
-
(2008)
Phys. Rep.
, vol.469
, pp. 93-153
-
-
Arenas, A.1
Diaz-Guilera, A.2
Kurths, J.3
Moreno, Y.4
Zhou, C.5
-
5
-
-
19944385353
-
The Kuramoto model: A simple paradigm for synchronization phenomena
-
Acebron, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F. & Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137-185 (2005).
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 137-185
-
-
Acebron, J.A.1
Bonilla, L.L.2
Vicente, C.J.P.3
Ritort, F.4
Spigler, R.5
-
6
-
-
56549085272
-
Critical phenomena in complex networks
-
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1275
-
-
Dorogovtsev, S.N.1
Goltsev, A.V.2
Mendes, J.F.F.3
-
7
-
-
84954199114
-
The Kuramoto model in complex networks
-
Rodrigues, F. A., Peron, T. K. D. M., Ji, P. & Kurths, J. The Kuramoto model in complex networks. Phys. Rep. 610, 1-98 (2016).
-
(2016)
Phys. Rep.
, vol.610
, pp. 1-98
-
-
Rodrigues, F.A.1
Peron, T.K.D.M.2
Ji, P.3
Kurths, J.4
-
8
-
-
28844500725
-
Thermodynamic limit of the first-order phase transition in the Kuramoto model
-
Pazó, D. Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E 72, 046211 (2005).
-
(2005)
Phys. Rev. E
, vol.72
-
-
Pazó, D.1
-
9
-
-
79952903188
-
Explosive synchronization transitions in scale-free networks
-
Gómez-Gardeñes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
-
-
Gómez-Gardeñes, J.1
Gómez, S.2
Arenas, A.3
Moreno, Y.4
-
10
-
-
84860153563
-
Explosive first-order transition to synchrony in networked chaotic oscillators
-
Leyva, I. et al. Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 108, 168702 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
-
-
Leyva, I.1
-
11
-
-
84876731865
-
Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity
-
Li, P., Zhang, K., Xu, X., Zhang, J. & Small, M. Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity. Phys. Rev. E 87, 042803 (2013).
-
(2013)
Phys. Rev. E
, vol.87
-
-
Li, P.1
Zhang, K.2
Xu, X.3
Zhang, J.4
Small, M.5
-
12
-
-
84863899794
-
Explosive synchronization enhanced by time-delayed coupling
-
Peron, T. K. D. M. & Rodrigues, F. A. Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E 86, 016102 (2012).
-
(2012)
Phys. Rev. E
, vol.86
-
-
Peron, T.K.D.M.1
Rodrigues, F.A.2
-
13
-
-
84878421224
-
Cluster explosive synchronization in complex networks
-
Ji, P., Peron, T. K. D. M., Menck, P. J., Rodrigues, F. A. & Kurths, J. Cluster explosive synchronization in complex networks. Phys. Rev. Lett. 110, 218701 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.110
-
-
Ji, P.1
Peron, T.K.D.M.2
Menck, P.J.3
Rodrigues, F.A.4
Kurths, J.5
-
14
-
-
84874341051
-
Explosive transitions to synchronization in networks of phase oscillators
-
Leyva, I. et al. Explosive transitions to synchronization in networks of phase oscillators. Sci. Rep. 3, 1281 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 1281
-
-
Leyva, I.1
-
15
-
-
84870417595
-
Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations
-
Peron, T. K. D. M. & Rodrigues, F. A. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Phys. Rev. E 86, 056108 (2012).
-
(2012)
Phys. Rev. E
, vol.86
-
-
Peron, T.K.D.M.1
Rodrigues, F.A.2
-
16
-
-
84875324919
-
Kuramoto model with frequency-degree correlations on complex networks
-
Coutinho, B. C., Goltsev, A. V., Dorogovtsev, S. N. & Mendes, J. F. F. Kuramoto model with frequency-degree correlations on complex networks. Phys. Rev. E 87, 032106 (2013).
-
(2013)
Phys. Rev. E
, vol.87
-
-
Coutinho, B.C.1
Goltsev, A.V.2
Dorogovtsev, S.N.3
Mendes, J.F.F.4
-
17
-
-
84897907464
-
Basin of Attraction Determines Hysteresis in Explosive Synchronization
-
Zou, Y., Pereira, T., Small, M., Liu, Z. & Kurths, J. Basin of Attraction Determines Hysteresis in Explosive Synchronization. Phys. Rev. Lett. 112, 114102 (2014).
-
(2014)
Phys. Rev. Lett.
, vol.112
-
-
Zou, Y.1
Pereira, T.2
Small, M.3
Liu, Z.4
Kurths, J.5
-
18
-
-
84903650372
-
Disorder induces explosive synchronization
-
Skardal, P. S. & Arenas, A. Disorder induces explosive synchronization. Phys. Rev. E 89, 062811 (2014).
-
(2014)
Phys. Rev. E
, vol.89
-
-
Skardal, P.S.1
Arenas, A.2
-
19
-
-
84918569347
-
Explosive oscillation death in coupled Stuart-Landau oscillators
-
Bi, H. et al. Explosive oscillation death in coupled Stuart-Landau oscillators. Europhys. Lett. 108, 50003 (2014).
-
(2014)
Europhys. Lett.
, vol.108
-
-
Bi, H.1
-
20
-
-
84923238533
-
Self-organized correlations lead to explosive synchronization
-
Chen, Y., Cao, Z., Wang, S. & Hu, G. Self-organized correlations lead to explosive synchronization. Phys. Rev. E 92, 022810 (2015).
-
(2015)
Phys. Rev. E
, vol.92
-
-
Chen, Y.1
Cao, Z.2
Wang, S.3
Hu, G.4
-
21
-
-
84919476072
-
Analysis of cluster explosive synchronization in complex networks
-
Ji, P., Peron, T. K. D., Rodrigues, F. A. & Kurths, J. Analysis of cluster explosive synchronization in complex networks. Phys. Rev. E 90, 062810 (2014).
-
(2014)
Phys. Rev. E
, vol.90
-
-
Ji, P.1
Peron, T.K.D.2
Rodrigues, F.A.3
Kurths, J.4
-
22
-
-
84921464378
-
Explosive synchronization in adaptive and multilayer networks
-
Zhang, X., Boccaletti, S., Guan, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015).
-
(2015)
Phys. Rev. Lett.
, vol.114
-
-
Zhang, X.1
Boccaletti, S.2
Guan, S.3
Liu, Z.4
-
23
-
-
84899832295
-
Low-dimensional behavior of Kuramoto model with inertia in complex networks
-
Ji, P., Peron, T. K., Rodrigues, F. A. & Kurths, J. Low-dimensional behavior of Kuramoto model with inertia in complex networks. Sci. Rep. 4, 4783 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 4783
-
-
Ji, P.1
Peron, T.K.2
Rodrigues, F.A.3
Kurths, J.4
-
24
-
-
84902176964
-
Explosive synchronization as a process of explosive percolation in dynamical phase space
-
Zhang, X., Zou, Y., Boccaletti, S. & Liu, Z. Explosive synchronization as a process of explosive percolation in dynamical phase space. Sci. Rep. 4, 5200 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 5200
-
-
Zhang, X.1
Zou, Y.2
Boccaletti, S.3
Liu, Z.4
-
25
-
-
84924405879
-
Explosive synchronization with partial degree-frequency correlation
-
Pinto, R. S. & Saa, A. Explosive synchronization with partial degree-frequency correlation. Phys. Rev. E 91, 022818 (2015).
-
(2015)
Phys. Rev. E
, vol.91
-
-
Pinto, R.S.1
Saa, A.2
-
26
-
-
84961291009
-
Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks
-
Yoon, S., Sorbaro Sindaci, M., Goltsev, A. V. & Mendes, J. F. F. Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks. Phys. Rev. E 91, 032814 (2015).
-
(2015)
Phys. Rev. E
, vol.91
-
-
Yoon, S.1
Sorbaro Sindaci, M.2
Goltsev, A.V.3
Mendes, J.F.F.4
-
27
-
-
84936972230
-
Explosive or Continuous: Incoherent state determines the route to synchronization
-
Xu, C., Gao, J., Sun, Y., Huang, X. & Zheng, Z. Explosive or Continuous: Incoherent state determines the route to synchronization. Sci. Rep. 5, 12039 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Xu, C.1
Gao, J.2
Sun, Y.3
Huang, X.4
Zheng, Z.5
-
28
-
-
84880606606
-
Explosive synchronization in a general complex network
-
R
-
Zhang, X., Hu, X., Kurths, J. & Liu, Z. Explosive synchronization in a general complex network. Phys. Rev. E 88, 010802(R) (2013).
-
(2013)
Phys. Rev. E
, vol.88
-
-
Zhang, X.1
Hu, X.2
Kurths, J.3
Liu, Z.4
-
29
-
-
84886058455
-
Explosive synchronization in weighted complex networks
-
Leyva, I. et al. Explosive synchronization in weighted complex networks. Phys. Rev. E 88, 042808 (2013).
-
(2013)
Phys. Rev. E
, vol.88
-
-
Leyva, I.1
-
30
-
-
84922674156
-
Exact solution for first-order synchronization transition in a generalized Kuramoto model
-
Hu, X. et al. Exact solution for first-order synchronization transition in a generalized Kuramoto model. Sci. Rep. 4, 7262 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 7262
-
-
Hu, X.1
-
31
-
-
79051469724
-
Synchronization and clustering of phase oscillators with heterogeneous coupling
-
Paissan, G. H. & Zanette, D. H. Synchronization and clustering of phase oscillators with heterogeneous coupling. Europhys. Lett. 77, 20001 (2007).
-
(2007)
Europhys. Lett.
, vol.77
-
-
Paissan, G.H.1
Zanette, D.H.2
-
32
-
-
41949083848
-
Synchronization of phase oscillators with heterogeneous coupling: A solvable case
-
Paissan, G. H. & Zanette, D. H. Synchronization of phase oscillators with heterogeneous coupling: A solvable case. Physica D 237, 818-828 (2008).
-
(2008)
Physica D
, vol.237
, pp. 818-828
-
-
Paissan, G.H.1
Zanette, D.H.2
-
33
-
-
84928104636
-
A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model
-
Chiba, H. A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Th. & Dynam. Sys. 35, 762-834 (2015).
-
(2015)
Ergod. Th. & Dynam. Sys
, vol.35
, pp. 762-834
-
-
Chiba, H.1
-
34
-
-
21344481602
-
Amplitude Expansions for Instabilities in Populations of Globally-Coupled Oscillators
-
Crawford, J. D. Amplitude Expansions for Instabilities in Populations of Globally-Coupled Oscillators. J. Stat. Phys. 74, 1047-1084 (1994).
-
(1994)
J. Stat. Phys.
, vol.74
, pp. 1047-1084
-
-
Crawford, J.D.1
-
35
-
-
48349110145
-
Kuramoto model with asymmetric distribution of natural frequencies
-
Basnarkov, L. & Urumov, V. Kuramoto model with asymmetric distribution of natural frequencies. Phys. Rev. E 78, 011113 (2008).
-
(2008)
Phys. Rev. E
, vol.78
-
-
Basnarkov, L.1
Urumov, V.2
-
36
-
-
84875519500
-
Mean-field and mean-ensemble frequencies of a system of coupled oscillators
-
Petkoski, S., Iatsenko, D., Basnarkov, L. & Stefanovska, A. Mean-field and mean-ensemble frequencies of a system of coupled oscillators. Phys. Rev. E 87, 032908 (2013).
-
(2013)
Phys. Rev. E
, vol.87
-
-
Petkoski, S.1
Iatsenko, D.2
Basnarkov, L.3
Stefanovska, A.4
-
37
-
-
1542499302
-
Stability of incoherence in a population of coupled oscillators
-
Strogatz, S. H. & Mirollo, R. E. Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613-635 (1991).
-
(1991)
J. Stat. Phys.
, vol.63
, pp. 613-635
-
-
Strogatz, S.H.1
Mirollo, R.E.2
-
38
-
-
4243765520
-
Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping
-
Strogatz, S. H., Mirollo, R. E. & Matthews, P. C. Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping. Phys. Rev. Lett. 8, 2730-2733 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.8
, pp. 2730-2733
-
-
Strogatz, S.H.1
Mirollo, R.E.2
Matthews, P.C.3
-
39
-
-
84855292010
-
Center manifold reduction for large populations of globally coupled phase oscillators
-
Chiba, H. & Nishikawa, I. Center manifold reduction for large populations of globally coupled phase oscillators. Chaos 21, 043103 (2011).
-
(2011)
Chaos
, vol.21
-
-
Chiba, H.1
Nishikawa, I.2
-
40
-
-
11844299929
-
Mutual entrainment between populations of coupled oscillators
-
Okuda, K. & Kuramoto, Y. Mutual entrainment between populations of coupled oscillators. Prog. Theor. Phys. 86, 1159-1176 (1991).
-
(1991)
Prog. Theor. Phys.
, vol.86
, pp. 1159-1176
-
-
Okuda, K.1
Kuramoto, Y.2
-
41
-
-
0001063041
-
Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators
-
Bonilla, L. L., Neu, J. C. & Spigler, R. Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67, 313-330 (1992).
-
(1992)
J. Stat. Phys.
, vol.67
, pp. 313-330
-
-
Bonilla, L.L.1
Neu, J.C.2
Spigler, R.3
-
42
-
-
22244479715
-
Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions
-
Bonilla, L. L., Pérez Vicente, C. J. & Spigler, R. Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Physica D 113, 79-98 (1998).
-
(1998)
Physica D
, vol.113
, pp. 79-98
-
-
Bonilla, L.L.1
Pérez Vicente, C.J.2
Spigler, R.3
|