-
1
-
-
84958624680
-
Inductively Defined Relations: A Brief Tutorial
-
Haveraan, M., and Owe, O., and Dahl, O.-J., editors, Recent Trends in Data Types Specification. Springer LNCS 1130
-
R. M. Burstall. Inductively Defined Relations: A Brief Tutorial. Extended Abstract. In Haveraan, M., and Owe, O., and Dahl, O.-J., editors, Recent Trends in Data Types Specification. Springer LNCS 1130, pp 14-17. 1996.
-
(1996)
Extended Abstract
, pp. 14-17
-
-
Burstall, R.M.1
-
2
-
-
0344792859
-
Reasoning with Inductively Defined Relations in the HOL Theorem Prover
-
University of Cambridge Computer Laboratory
-
J. Camilleri and T. Melham. Reasoning with Inductively Defined Relations in the HOL Theorem Prover. Technical Report № 265 University of Cambridge Computer Laboratory. 1992.
-
(1992)
Technical Report № 265
-
-
Camilleri, J.1
Melham, T.2
-
3
-
-
0000826543
-
Negation as Failure
-
edited by H. Gallaire and J. Minker. Plenum Press
-
K. Clark. Negation as Failure. pp 293-322 of Logic and Data Bases, edited by H. Gallaire and J. Minker. Plenum Press. 1978.
-
(1978)
Logic and Data Bases
, pp. 293-322
-
-
Clark, K.1
-
4
-
-
84958996958
-
The Coq Proof Assistant Reference Manual, Version 5.10
-
Lyon, France
-
C. Cornes, J. Courant, J.F. Fillaitre, G. Huet, C. Murthy, C. Parent, C. Paulin, B. Werner. The Coq Proof Assistant Reference Manual, Version 5.10. Projet Coq, Inria-Rocquencourt and CNRS-ENS Lyon, France.
-
Projet Coq, Inria-Rocquencourt and CNRS-ENS
-
-
Cornes, C.1
Courant, J.2
Fillaitre, J.F.3
Huet, G.4
Murthy, C.5
Parent, C.6
Paulin, C.7
Werner, B.8
-
6
-
-
85015063266
-
Automating Inversion of Inductive Predicates in Coq
-
Turin, June, To appear in LNCS series
-
C. Cornes, D. Terrasse. Automating Inversion of Inductive Predicates in Coq. In BRA Workshop on Types for Proofs and Programs, Turin, June 1995. To appear in LNCS series.
-
(1995)
BRA Workshop on Types for Proofs and Programs
-
-
Cornes, C.1
Terrasse, D.2
-
7
-
-
0012654511
-
A finitary version of the calculus of partial inductive definitions
-
L.-H. Eriksson, L. Hallnas & P. Schroeder-Heister (editors), Stockholm. Springer LNCS 596
-
L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In: L.-H. Eriksson, L. Hallnas & P. Schroeder-Heister (editors), Extensions of Logic Programming. Second International Workshop, ELP-91, Stockholm. Springer LNCS 596, pp 89-134. 1992.
-
(1992)
Extensions of Logic Programming. Second International Workshop, ELP-91
, pp. 89-134
-
-
Eriksson, L.-H.1
-
8
-
-
0003266602
-
Inductive Sets and Families in Martin-Löf’s Type Theory
-
edited by G. Huet and G. Plotkin. CUP, E. Giminez. Codifying guarded definitions with recursive schemes. Proceedings of Types 94, pp39-59
-
P. Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. pp 280-306 of Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.
-
(1991)
Logical Frameworks
, pp. 280-306
-
-
Dybjer, P.1
-
10
-
-
0026220898
-
Partial Inductive Definitions
-
L. Hallnäs. Partial Inductive Definitions. Theoretical Computer Science. Vol. 87. pp 115-142. 1991.
-
(1991)
Theoretical Computer Science
, vol.87
, pp. 115-142
-
-
Hallnäs, L.1
-
13
-
-
84958996960
-
Computation and Reasoning: A Type Theory for Computer Science
-
Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP 1994.
-
(1994)
OUP
-
-
Luo, Z.1
-
14
-
-
0003522165
-
LEGO Proof Development System: User Manual
-
Zhaohui Luo, Randy Pollack. LEGO Proof Development System: User Manual. Technical Note, 1992.
-
(1992)
Technical Note
-
-
Luo, Z.1
Pollack, R.2
-
15
-
-
0003976687
-
The Implementation of ALF
-
Chalmers University of Technology and University of Goteborg, Sweden. January
-
Lena Magnusson. The Implementation of ALF. PhD Thesis. Chalmers University of Technology and University of Goteborg, Sweden. January 1995.
-
(1995)
PhD Thesis
-
-
Magnusson, L.1
|