메뉴 건너뛰기




Volumn 125, Issue , 2016, Pages 18-25

A data driven nonlinear stochastic model for blood glucose dynamics

Author keywords

Blood glucose dynamics; Data driven models; Diabetes mellitus; Nonlinear systems; Stochastic systems; System identification

Indexed keywords

BLOOD; DIAGNOSIS; DIFFERENTIAL EQUATIONS; DYNAMICS; FREE ENERGY; GLUCOSE; IDENTIFICATION (CONTROL SYSTEMS); INSULIN; NONLINEAR EQUATIONS; NONLINEAR SYSTEMS; SPEECH ENHANCEMENT; STOCHASTIC CONTROL SYSTEMS; STOCHASTIC SYSTEMS;

EID: 84958941005     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2015.10.021     Document Type: Article
Times cited : (21)

References (29)
  • 1
    • 85012963241 scopus 로고
    • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
    • The Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1994, 286-287.
    • (1994) N. Engl. J. Med. , pp. 286-287
  • 2
    • 79959616082 scopus 로고    scopus 로고
    • Closed-loop insulin delivery: from bench to clinical practice
    • Hovorka R. Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 2011, 7(7):385-395.
    • (2011) Nat. Rev. Endocrinol. , vol.7 , Issue.7 , pp. 385-395
    • Hovorka, R.1
  • 3
    • 84924855977 scopus 로고    scopus 로고
    • Modelling endogenous insulin concentration in type 2 diabetes during closed-loop insulin delivery
    • Ruan Y., Thabit H., Wilinska M.E., Hovorka R. Modelling endogenous insulin concentration in type 2 diabetes during closed-loop insulin delivery. BioMed. Eng. Online 2015, 14(1):19.
    • (2015) BioMed. Eng. Online , vol.14 , Issue.1 , pp. 19
    • Ruan, Y.1    Thabit, H.2    Wilinska, M.E.3    Hovorka, R.4
  • 4
    • 0024834748 scopus 로고
    • Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach
    • Bergman R.N. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989, 38(12):1512-1527.
    • (1989) Diabetes , vol.38 , Issue.12 , pp. 1512-1527
    • Bergman, R.N.1
  • 5
    • 84881252093 scopus 로고    scopus 로고
    • Mathematical modeling of the glucose-insulin system: a review
    • Palumbo P., Ditlevsen S., Bertuzzi A., De Gaetano A. Mathematical modeling of the glucose-insulin system: a review. Math. Biosci. 2013, 244(2):69-81.
    • (2013) Math. Biosci. , vol.244 , Issue.2 , pp. 69-81
    • Palumbo, P.1    Ditlevsen, S.2    Bertuzzi, A.3    De Gaetano, A.4
  • 6
    • 0034137637 scopus 로고    scopus 로고
    • Mathematical modelling of the intravenous glucose tolerance test
    • De Gaetano A., Arino O. Mathematical modelling of the intravenous glucose tolerance test. J. Math. Biol. 2000, 40(2):136-168.
    • (2000) J. Math. Biol. , vol.40 , Issue.2 , pp. 136-168
    • De Gaetano, A.1    Arino, O.2
  • 10
    • 33749651969 scopus 로고    scopus 로고
    • Empirical Modeling for Glucose Control in Critical Care and Diabetes
    • Florian J., Parker R.S. Empirical Modeling for Glucose Control in Critical Care and Diabetes. Eur. J. Control 2005, 11(6):601-616.
    • (2005) Eur. J. Control , vol.11 , Issue.6 , pp. 601-616
    • Florian, J.1    Parker, R.S.2
  • 11
    • 0032078661 scopus 로고    scopus 로고
    • Simulation studies on neural predictive control of glucose using the subcutaneous route
    • Trajanoski Z., Regittnig W., Wach P. Simulation studies on neural predictive control of glucose using the subcutaneous route. Comput. Methods Progr. Biomed. 1998, 56(2):133-139.
    • (1998) Comput. Methods Progr. Biomed. , vol.56 , Issue.2 , pp. 133-139
    • Trajanoski, Z.1    Regittnig, W.2    Wach, P.3
  • 13
    • 33644622897 scopus 로고    scopus 로고
    • Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview
    • Makroglou A., Li J., Kuang Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl. Numer. Math. 2006, 56(3-4):559-573.
    • (2006) Appl. Numer. Math. , vol.56 , Issue.3-4 , pp. 559-573
    • Makroglou, A.1    Li, J.2    Kuang, Y.3
  • 14
    • 84874635601 scopus 로고    scopus 로고
    • Glucose Prediction in type 1 and type 2 diabetic patients using data driven techniques
    • Georga E.I., Protopappas V.C., Fotiadis D.I. Glucose Prediction in type 1 and type 2 diabetic patients using data driven techniques. Knowl. Oriented Appl. Datamin. 2011, 277-296.
    • (2011) Knowl. Oriented Appl. Datamin. , pp. 277-296
    • Georga, E.I.1    Protopappas, V.C.2    Fotiadis, D.I.3
  • 15
    • 13144300120 scopus 로고    scopus 로고
    • A case study of type 2 diabetes self-management
    • Wu H.-i. A case study of type 2 diabetes self-management. Biomed. Eng. Online 2005, 4:4.
    • (2005) Biomed. Eng. Online , vol.4 , pp. 4
    • Wu, H.-I.1
  • 16
    • 84901016527 scopus 로고    scopus 로고
    • Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes
    • Kirchsteiger H., Johansson R., Renard E., Re L.D. Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes. Int. J. Control 2014, 1-13.
    • (2014) Int. J. Control , pp. 1-13
    • Kirchsteiger, H.1    Johansson, R.2    Renard, E.3    Re, L.D.4
  • 18
    • 84977844581 scopus 로고    scopus 로고
    • Continuous glucose monitoring
    • Minimed M., City R. Continuous glucose monitoring. Arch. Dis. Childh. 2005, 28(5):150.
    • (2005) Arch. Dis. Childh. , vol.28 , Issue.5 , pp. 150
    • Minimed, M.1    City, R.2
  • 20
    • 84901001437 scopus 로고    scopus 로고
    • Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics
    • Cescon M., Johansson R., Renard E., Maran A. Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics. Int. J. Control 2014, 87(7):1438-1453.
    • (2014) Int. J. Control , vol.87 , Issue.7 , pp. 1438-1453
    • Cescon, M.1    Johansson, R.2    Renard, E.3    Maran, A.4
  • 24
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau J., Friston K.J., Kiebel S.J. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenom. 2009, 238(21):2089-2118.
    • (2009) Physica D: Nonlinear Phenom. , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.J.2    Kiebel, S.J.3
  • 26
    • 84894446749 scopus 로고    scopus 로고
    • Determination of parameter identifiability in nonlinear biophysical models: a Bayesian approach
    • Hines K.E., Middendorf T.R., Aldrich R.W. Determination of parameter identifiability in nonlinear biophysical models: a Bayesian approach. J. Gen. Physiol. 2014, 143(3):401-416.
    • (2014) J. Gen. Physiol. , vol.143 , Issue.3 , pp. 401-416
    • Hines, K.E.1    Middendorf, T.R.2    Aldrich, R.W.3
  • 28
    • 0022364216 scopus 로고
    • Plasma glucose and insulin profiles in normal subjects ingesting diets of varying carbohydrate, fat, and protein content
    • Nuttall F.Q., Gannon M.C., Wald J.L., Ahmed M., Frank M.A., Nuttall Q., Gannon Marry C., Wald Jean L. Plasma glucose and insulin profiles in normal subjects ingesting diets of varying carbohydrate, fat, and protein content. J. Am. Coll. Nutr. 1985, 4(4):437-450.
    • (1985) J. Am. Coll. Nutr. , vol.4 , Issue.4 , pp. 437-450
    • Nuttall, F.Q.1    Gannon, M.C.2    Wald, J.L.3    Ahmed, M.4    Frank, M.A.5    Nuttall, Q.6    Gannon, M.C.7    Wald, J.L.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.