메뉴 건너뛰기




Volumn 2063, Issue , 2001, Pages 170-185

Learning time allocation using neural networks

Author keywords

Genetic algorithms; Lines of action; Search decisions; Temporal difference learning; Time allocation

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; COMPUTER GAMES; FUNCTION EVALUATION; GENETIC ALGORITHMS; TREES (MATHEMATICS);

EID: 84958777158     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45579-5_11     Document Type: Conference Paper
Times cited : (7)

References (35)
  • 1
    • 0004867273 scopus 로고    scopus 로고
    • Evaluation tuning for computer chess: Linear discriminant methods
    • T.S. Anantharaman. Evaluation tuning for computer chess: Linear discriminant methods. ICCA Journal, 20(4): 224-242, 1997.
    • (1997) ICCA Journal , vol.20 , Issue.4 , pp. 224-242
    • Anantharaman, T.S.1
  • 2
    • 0031351658 scopus 로고    scopus 로고
    • A bayesian approach to relevance in game playing
    • E.B. Baum and W.D. Smith. A bayesian approach to relevance in game playing. Artificial Intelligence, 97(1-2): 195-242, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 195-242
    • Baum, E.B.1    Smith, W.D.2
  • 3
    • 0004870198 scopus 로고    scopus 로고
    • Experiments in parameter learning using temporal differences
    • J. Baxter, A. Tridgell, and L. Weaver. Experiments in parameter learning using temporal differences. ICCA Journal, 21(2): 84-99, 1998.
    • (1998) ICCA Journal , vol.21 , Issue.2 , pp. 84-99
    • Baxter, J.1    Tridgell, A.2    Weaver, L.3
  • 4
    • 0004502426 scopus 로고    scopus 로고
    • Learning piece values using temporal difference learning
    • D.F. Beal and M.C. Smith. Learning piece values using temporal difference learning. ICCA Journal, 20(3): 147-151, 1997.
    • (1997) ICCA Journal , vol.20 , Issue.3 , pp. 147-151
    • Beal, D.F.1    Smith, M.C.2
  • 5
    • 0033632826 scopus 로고    scopus 로고
    • Temporal difference learning for heuristic search and game playing
    • D.F. Beal and M.C. Smith. Temporal difference learning for heuristic search and game playing. Information Sciences, 122(1): 3-21, 2000.
    • (2000) Information Sciences , vol.122 , Issue.1 , pp. 3-21
    • Beal, D.F.1    Smith, M.C.2
  • 7
    • 0007996969 scopus 로고    scopus 로고
    • Experiments with Multi-ProbCut and a new high-quality evaluation function for Othello
    • H. J. van den Herik and H. Iida, editors
    • M. Buro. Experiments with Multi-ProbCut and a new high-quality evaluation function for Othello. In H. J. van den Herik and H. Iida, editors. Games in AI Research. 1999.
    • (1999) Games in AI Research
    • Buro, M.1
  • 12
    • 0007994746 scopus 로고    scopus 로고
    • Adaptive null-move pruning
    • E.A. Heinz. Adaptive null-move pruning. ICCA Journal, 22(3): 123-132, 1999.
    • (1999) ICCA Journal , vol.22 , Issue.3 , pp. 123-132
    • Heinz, E.A.1
  • 13
    • 5844393247 scopus 로고
    • Using time wisely
    • R.M. Hyatt. Using time wisely. ICCA Journal, 7(1): 4-9, 1984.
    • (1984) ICCA Journal , vol.7 , Issue.1 , pp. 4-9
    • Hyatt, R.M.1
  • 14
    • 0001666986 scopus 로고
    • Potential applications of opponent-model search. Part 1: The domain of applicability
    • H. Iida, J.W.H.M. Uiterwijk, H.J. van den Herik, and I.S. Herschberg. Potential applications of opponent-model search. Part 1: The domain of applicability. ICCA Journal, 16(4): 201-208, 1993.
    • (1993) ICCA Journal , vol.16 , Issue.4 , pp. 201-208
    • Iida, H.1    Uiterwijk, J.W.H.M.2    van den Herik, H.J.3    Herschberg, I.S.4
  • 16
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1-2): 99-134, 1998.
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.R.3
  • 17
    • 0008336447 scopus 로고    scopus 로고
    • An analysis of actor/critic algorithms using eligibility traces: Reinforcement learning with imperfect value function
    • H. Kimura and S. Kobayashi. An analysis of actor/critic algorithms using eligibility traces: Reinforcement learning with imperfect value function. In Proceedings of the 15th International Conference on Machine Learning, pages 278-286, 1998.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 278-286
    • Kimura, H.1    Kobayashi, S.2
  • 18
    • 0343893613 scopus 로고    scopus 로고
    • Actor-critic type learning algorithms for markov decision processes
    • V.R. Konda and V.S. Borkar. Actor-critic type learning algorithms for markov decision processes. SIAM Journal of Control and Optimisation, 38(1): 94-133, 1999.
    • (1999) SIAM Journal of Control and Optimisation , vol.38 , Issue.1 , pp. 94-133
    • Konda, V.R.1    Borkar, V.S.2
  • 20
    • 0006251793 scopus 로고
    • The StarTech massively parallel chess program
    • B.C. Kuszmaul. The StarTech massively parallel chess program. ICCA Journal, 18(1): 3-19, 1995.
    • (1995) ICCA Journal , vol.18 , Issue.1 , pp. 3-19
    • Kuszmaul, B.C.1
  • 21
    • 84958790249 scopus 로고    scopus 로고
    • Using the Cilk multithreaded programming language to implement a multiprocessor chess program
    • H.J. van den Herik and B. Monien, editors
    • C. Leiserson. Using the Cilk multithreaded programming language to implement a multiprocessor chess program. In H.J. van den Herik and B. Monien, editors. Proceedings of the Advances in Computer Games 9 Conference, 2000.
    • (2000) Proceedings of the Advances in Computer Games 9 Conference
    • Leiserson, C.1
  • 22
    • 5844259149 scopus 로고    scopus 로고
    • Learning of resource allocation strategies for game playing
    • S. Markovitch and Y. Sella. Learning of resource allocation strategies for game playing. Computational Intelligence, 12(1): 88-105, 1996.
    • (1996) Computational Intelligence , vol.12 , Issue.1 , pp. 88-105
    • Markovitch, S.1    Sella, Y.2
  • 23
  • 28
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • A.L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3): 211-229, 1959.
    • (1959) IBM Journal of Research and Development , vol.3 , Issue.3 , pp. 211-229
    • Samuel, A.L.1
  • 29
    • 0842283658 scopus 로고    scopus 로고
    • Kasparov versus DEEP BLUE: The rematch
    • J. Schaeffer and A. Plaat. Kasparov versus DEEP BLUE: The rematch. ICCA Journal, 20(2): 95-101, 1997.
    • (1997) ICCA Journal , vol.20 , Issue.2 , pp. 95-101
    • Schaeffer, J.1    Plaat, A.2
  • 30
    • 84969396935 scopus 로고    scopus 로고
    • The Kasparov - DEEP BLUE games
    • Y. Seirawan. The Kasparov - DEEP BLUE games. ICCA Journal, 20(2): 102-125, 1997.
    • (1997) ICCA Journal , vol.20 , Issue.2 , pp. 102-125
    • Seirawan, Y.1
  • 33
    • 0001046225 scopus 로고
    • Practical issues in temporal difference learning
    • G.J. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8: 257-277, 1992.
    • (1992) Machine Learning , vol.8 , pp. 257-277
    • Tesauro, G.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.