-
1
-
-
57149136576
-
A Review on nanofluids—Part I: Theoretical and numerical investigations
-
Q. X. Wang and A. S. Mujumdar, “A Review on nanofluids—Part I: Theoretical and numerical investigations”, Braz. J. Chem. Eng. 25(4), 613–630 (2008). http://dx.doi.org/10.1590/S0104-66322008000400001
-
(2008)
Braz. J. Chem. Eng.
, vol.25
, Issue.4
, pp. 613-630
-
-
Wang, Q.X.1
Mujumdar, A.S.2
-
2
-
-
80052158294
-
Nanofluid applications in future automobiles: Comprehensive review of existing data
-
S. Senthilraja, M. Karthikeyan and R. Gangadevi, “Nanofluid applications in future automobiles: Comprehensive review of existing data”, Nano-Micro Lett. 2(4), 306–310 (2010). http://dx.doi.org/10.3786/nml.v2i4.p306-310
-
(2010)
Nano-Micro Lett.
, vol.2
, Issue.4
, pp. 306-310
-
-
Senthilraja, S.1
Karthikeyan, M.2
Gangadevi, R.3
-
3
-
-
77956619288
-
Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)
-
K. Y. Leong, R. Saidur, S. N. Kazi and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)”, Appl. Therm. Eng. 30(17–18), 2685–2692 (2010). http://dx.doi.org/10.1016/j.applthermaleng.2010.07.019
-
(2010)
Appl. Therm. Eng.
, vol.30
, Issue.17-18
, pp. 2685-2692
-
-
Leong, K.Y.1
Saidur, R.2
Kazi, S.N.3
Mamun, A.H.4
-
4
-
-
84861894335
-
Analysis of nanofluids as cutting fluid in grinding EN-31 steel
-
V. Vasu and K. M. Kumar, “Analysis of nanofluids as cutting fluid in grinding EN-31 steel”, Nano-Micro Lett. 3(4), 209–214 (2011). http://dx.doi.org/10.3786/nml.v3i4.p209-214
-
(2011)
Nano-Micro Lett.
, vol.3
, Issue.4
, pp. 209-214
-
-
Vasu, V.1
Kumar, K.M.2
-
5
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
C. H. Li and G. P. Peterson,“Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)”, J. Appl. Phys. 99(8), 084314–8 (2006). http://dx.doi.org/10.1063/1.2191571
-
(2006)
J. Appl. Phys.
, vol.99
, Issue.8
, pp. 084314-84318
-
-
Li, C.H.1
Peterson, G.P.2
-
6
-
-
33749589746
-
Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids
-
H. Zhu, C. Zhang, S. Liu, Y. Tang and Y. Yin, “Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids”, Appl. Phys. Lett. 89(2), 023123–3 (2006). http://dx.doi.org/+10.1063/1.2221905
-
(2006)
Appl. Phys. Lett.
, vol.89
, Issue.2
, pp. 023123
-
-
Zhu, H.1
Zhang, C.2
Liu, S.3
Tang, Y.4
Yin, Y.5
-
8
-
-
0030378695
-
Application of metallic nanoparticle suspension in advanced cooling systems
-
S. Lee and S. U. S. Choi, “Application of metallic nanoparticle suspension in advanced cooling systems”. Proceedings of Recent Advances in Solids/Structures, vol. 342/MD-vol. 72, ASME, USA, New York 227–234 (1996).
-
(1996)
Proceedings of Recent Advances in Solids/Structures
, vol.342
, pp. 227-234
-
-
Lee, S.1
Choi, S.U.S.2
-
10
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
J. Eastman, S. Choi, S. Li, W. Yu and L. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett. 78(6), 718–720 (2001). http://dx.doi.org/10.1063/1.1341218
-
(2001)
Appl. Phys. Lett.
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.1
Choi, S.2
Li, S.3
Yu, W.4
Thompson, L.5
-
11
-
-
0035473529
-
Anomalous thermal conductivity enhancement in nanotube suspensions
-
S. U. S. Choi, Z. G. Zhang and W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett. 79(14), 2252–2254 (2001). http://dx.doi.org/10.1063/1.1408272
-
(2001)
Appl. Phys. Lett.
, vol.79
, Issue.14
, pp. 2252-2254
-
-
Choi, S.U.S.1
Zhang, Z.G.2
Yu, W.3
Lockwood, F.E.4
Grulke, E.A.5
-
12
-
-
0142167499
-
Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects
-
H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Appl. Phys. Lett. 83(14), 2931–2933 (2003). http://dx.doi.org/10.1063/1.1602578
-
(2003)
Appl. Phys. Lett.
, vol.83
, Issue.14
, pp. 2931-2933
-
-
Patel, H.E.1
Das, S.K.2
Sundararajan, T.3
Nair, A.S.4
George, B.5
Pradeep, T.6
-
13
-
-
0142156221
-
Pool boiling heat transfer experiments in silica-water nano-fluids
-
P. Vassallo, R. Kumar and S. DÀmico, “Pool boiling heat transfer experiments in silica-water nano-fluids”, Int. J. Heat Mass Trans. 47(2), 407–411 (2004). http://dx.doi.org/10.1016/S0017-9310(03)00361-2
-
(2004)
Int. J. Heat Mass Trans.
, vol.47
, Issue.2
, pp. 407-411
-
-
Vassallo, P.1
Kumar, R.2
DÀmico, S.3
-
14
-
-
18844419456
-
Nanofluids for thermal transport
-
P. Keblinski, J. A. Eastman and D. G. Cahill, “Nanofluids for thermal transport”, Mater. Today 8(6), 36–44 (2005). http://dx.doi.org/10.1016/S1369-7021(05)70936-6
-
(2005)
Mater. Today
, vol.8
, Issue.6
, pp. 36-44
-
-
Keblinski, P.1
Eastman, J.A.2
Cahill, D.G.3
-
15
-
-
3242670860
-
A novel one-step chemical method for preparation of copper nanofluids
-
H. T. Zhu, Y. S. Lin and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids”, J. Colloid Interface Sci. 277(1), 100–103 (2004). http://dx.doi.org/10.1016/j.jcis.2004.04.026
-
(2004)
J. Colloid Interface Sci.
, vol.277
, Issue.1
, pp. 100-103
-
-
Zhu, H.T.1
Lin, Y.S.2
Yin, Y.S.3
-
16
-
-
84866395347
-
Synthesis of copper nanofluids using ascorbic acid reduction method via one step solution phase approach
-
S. U. Shenoy and A. N. Shetty, “Synthesis of copper nanofluids using ascorbic acid reduction method via one step solution phase approach”, J. ASTM Int. 9(5), 1–13 (2012). http://dx.doi.org/10.1520/JAI104416
-
(2012)
J. ASTM Int.
, vol.9
, Issue.5
, pp. 1-13
-
-
Shenoy, S.U.1
Shetty, A.N.2
-
17
-
-
79956195495
-
Synthesis characterization and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process
-
G. Paul, J. Philip, B. Raj, P. K. Das and I. Manna, “Synthesis characterization and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process”, Int. J. Heat Mass Tran. 54(15–16), 3783–3788 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
-
(2011)
Int. J. Heat Mass Tran.
, vol.54
, Issue.15-16
, pp. 3783-3788
-
-
Paul, G.1
Philip, J.2
Raj, B.3
Das, P.K.4
Manna, I.5
-
18
-
-
79954597253
-
Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid
-
W. Yu, H. Xie, Y. Li and L. Chen, “Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid”, Particuology 9(2), 187–191 (2011). http://dx.doi.org/10.1016/j.partic.2010.05.014
-
(2011)
Particuology
, vol.9
, Issue.2
, pp. 187-191
-
-
Yu, W.1
Xie, H.2
Li, Y.3
Chen, L.4
-
19
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer 11(2), 151–170 (1998). http://dx.doi.org/10.1080/08916159808946559
-
(1998)
Exp. Heat Transfer
, vol.11
, Issue.2
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
20
-
-
29444436413
-
Formulation of nanofluids for natural convective heat transfer applications
-
D. Wen and Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications”, Int. J. Heat Fluid Flow 26(6), 855–864 (2005). http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.10.005
-
(2005)
Int. J. Heat Fluid Flow
, vol.26
, Issue.6
, pp. 855-864
-
-
Wen, D.1
Ding, Y.2
-
21
-
-
51449087555
-
Ultrasound-assisted green synthesis of nanocrystallineZnO in the ionic liquid [hmim][NTf2]
-
E. Goharshadi, Y. Ding, M. Jorabchi and P. Nancarrow, “Ultrasound-assisted green synthesis of nanocrystallineZnO in the ionic liquid [hmim][NTf2]”, Ultrason. Sonochem. 16(1), 120–123 (2009). http://dx.doi.org/10.1016/j.ultsonch.2008.05.017
-
(2009)
Ultrason. Sonochem.
, vol.16
, Issue.1
, pp. 120-123
-
-
Goharshadi, E.1
Ding, Y.2
Jorabchi, M.3
Nancarrow, P.4
-
22
-
-
79951671980
-
Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
-
P. Sharma, I. Baek, T. Cho, S. Park and K. B. Lee, “Enhancement of thermal conductivity of ethylene glycol based silver nanofluids”, Powder Technol. 208(1), 7–19 (2011). http://dx.doi.org/10.1016/j.powtec.2010.11.016
-
(2011)
Powder Technol.
, vol.208
, Issue.1
, pp. 7-19
-
-
Sharma, P.1
Baek, I.2
Cho, T.3
Park, S.4
Lee, K.B.5
-
23
-
-
42149109642
-
Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid
-
J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley and G. Chen, “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid”, J. Appl. Phys. 103(7), 074301–6 (2008). http://dx.doi.org/10.1063/1.2902483
-
(2008)
J. Appl. Phys.
, vol.103
, Issue.7
, pp. 074301-74306
-
-
Garg, J.1
Poudel, B.2
Chiesa, M.3
Gordon, J.B.4
Ma, J.J.5
Wang, J.B.6
Ren, Z.F.7
Kang, Y.T.8
Ohtani, H.9
Nanda, J.10
McKinley, G.H.11
Chen, G.12
-
24
-
-
60849137199
-
Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids
-
H. J. Kim, I. C. Bang and J. Onoe, “Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids”, Opt. Laser Eng. 47(5), 532–538 (2009). http://dx.doi.org/10.1016/j.optlaseng.2008.10.011
-
(2009)
Opt. Laser Eng.
, vol.47
, Issue.5
, pp. 532-538
-
-
Kim, H.J.1
Bang, I.C.2
Onoe, J.3
-
25
-
-
84869382808
-
Controlling the properties of solvent-free Fe3O4nanofluids by corona structure
-
Y. Tan, Y. Zheng, N. Wang and A. Zhang, “Controlling the properties of solvent-free Fe3O4nanofluids by corona structure”, Nano-Micro Lett. 4(4), 208–214 (2012). http://dx.doi.org/10.3786/nml.v4i4.p208-214
-
(2012)
Nano-Micro Lett.
, vol.4
, Issue.4
, pp. 208-214
-
-
Tan, Y.1
Zheng, Y.2
Wang, N.3
Zhang, A.4
-
26
-
-
84857059450
-
Novel nanofluids based on mesoporous silica for enhanced heat transfer
-
N. Nikkam, M. Saleemi, M. Toprak, S. Li, M. Muahmmed, E. B. Haghighi, R. Khodabandeh, B. Palm, “Novel nanofluids based on mesoporous silica for enhanced heat transfer”, J. Nanopart. Res. 13(11), 6201–6206 (2011). http://dx.doi.org/10.1007/s11051-011-0404-1
-
(2011)
J. Nanopart. Res.
, vol.13
, Issue.11
, pp. 6201-6206
-
-
Nikkam, N.1
Saleemi, M.2
Toprak, M.3
Li, S.4
Muahmmed, M.5
Haghighi, E.B.6
Khodabandeh, R.7
Palm, B.8
-
27
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME J. Heat Transf. 121(2), 280–289 (1999).
-
(1999)
ASME J. Heat Transf.
, vol.121
, Issue.2
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
28
-
-
48249157373
-
Transport properties of alumina nanofluids
-
K. V. Wong and T. Kurma, “Transport properties of alumina nanofluids”, Nanotechnology 19(34), 345702–8 (2008). http://dx.doi.org/10.1115/1.2825978
-
(2008)
Nanotechnology
, vol.19
, Issue.34
, pp. 345702-345708
-
-
Wong, K.V.1
Kurma, T.2
-
29
-
-
47249104612
-
The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)
-
A. Amrollahi, A. A. Hamidi and A. M. Rashidi, “The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)”, Nanotechnology 19(31), 315701–8 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315701
-
(2008)
Nanotechnology
, vol.19
, Issue.31
, pp. 315701-315708
-
-
Amrollahi, A.1
Hamidi, A.A.2
Rashidi, A.M.3
-
30
-
-
75449086990
-
Synthesis, structure and properties of nanosized silicon carbide
-
R. A. Andrievski, “Synthesis, structure and properties of nanosized silicon carbide”, Rev.Adv.Mater.Sci. 22, 1–20 (2009).
-
(2009)
Rev.Adv.Mater.Sci.
, vol.22
, pp. 1-20
-
-
Andrievski, R.A.1
-
31
-
-
0242359493
-
Thermal conductivity of suspensions containing nanosizedSiC particles
-
H. Xie, J. Wang, T. Xi and Y. Liu, “Thermal conductivity of suspensions containing nanosizedSiC particles”, Int. J. Thermophys. 23(2), 571–580 (2002). http://dx.doi.org/10.1023/A:1015121805842
-
(2002)
Int. J. Thermophys.
, vol.23
, Issue.2
, pp. 571-580
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
-
32
-
-
78449276432
-
Investigation of viscosity and thermal conductivity of SiCnanofluids for heat transfer applications
-
S. W. Lee, S. D. Park, S. Kang, I. C. Bang and J. H. Kim, “Investigation of viscosity and thermal conductivity of SiCnanofluids for heat transfer applications”, Int. J. Heat Mass. Tran. 54(1–3), 433–438 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
-
(2011)
Int. J. Heat Mass. Tran.
, vol.54
, Issue.1-3
, pp. 433-438
-
-
Lee, S.W.1
Park, S.D.2
Kang, S.3
Bang, I.C.4
Kim, J.H.5
-
33
-
-
63749098385
-
An investigation of silicon carbide-water nanofluid for heat transfer applications
-
D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith and J. M. Lopez-Cepero, “An investigation of silicon carbide-water nanofluid for heat transfer applications”, J. Appl. Phys. 105(6), 064306–064306–6 (2009). http://dx.doi.org/10.1063/1.3082094
-
(2009)
J. Appl. Phys.
, vol.105
, Issue.6
, pp. 64306
-
-
Singh, D.1
Timofeeva, E.2
Yu, W.3
Routbort, J.4
France, D.5
Smith, D.6
Lopez-Cepero, J.M.7
-
34
-
-
77951854605
-
Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiCnanofluids
-
E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, J. L. Routbort, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiCnanofluids”, Nanotechnology 21(21), 215703–10 (2010). http://dx.doi.org/10.1088/0957-4484/21/21/215703
-
(2010)
Nanotechnology
, vol.21
, Issue.21
, pp. 215703-215710
-
-
Timofeeva, E.V.1
Smith, D.S.2
Yu, W.3
France, D.M.4
Singh, D.5
Routbort, J.L.6
-
35
-
-
78751505562
-
2O nanofluids
-
2O nanofluids”, J. Appl. Phys. 109(1), 014914 (2011). http://dx.doi.org/10.1063/1.3524274
-
(2011)
J. Appl. Phys.
, vol.109
, Issue.1
, pp. 014914
-
-
Timofeeva, E.V.1
Yu, W.2
France, D.M.3
Singh, D.4
Routbort, J.L.5
-
36
-
-
84875036410
-
Screening single phase laminar convective heat transfer of nanofluids in a micro-tube
-
E. B. Haghighi, Z. Anwar, I. Lumbreras, S. A. Mirmohammadi, M. Behi and R. Khodabandeh and B. Palm, “Screening single phase laminar convective heat transfer of nanofluids in a micro-tube”, J. Phys. Conf. Ser. 395(1), 012036–11 (2012). http://dx.doi.org/10.1088/1742-6596/395/1/012036
-
(2012)
J. Phys. Conf. Ser.
, vol.395
, Issue.1
, pp. 12011-012036
-
-
Haghighi, E.B.1
Anwar, Z.2
Lumbreras, I.3
Mirmohammadi, S.A.4
Behi, M.5
Khodabandeh, R.6
Palm, B.7
-
37
-
-
85038844189
-
Silicon carbide microelectromechanical systems for harsh environments
-
R. Cheung, “Silicon carbide microelectromechanical systems for harsh environments”, Imperial College, pp3 (2006).
-
(2006)
Imperial College
, pp. 3
-
-
Cheung, R.1
-
38
-
-
66149160191
-
Superconductivity in carrierdoped silicon carbide
-
T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, “Superconductivity in carrierdoped silicon carbide”, Sci. Technol. Adv. Mater. 9(4), 044204–8 (2008). http://dx.doi.org/10.1088/1468-6996/9/4/044204
-
(2008)
Sci. Technol. Adv. Mater.
, vol.9
, Issue.4
, pp. 044204-44208
-
-
Muranaka, T.1
Kikuchi, Y.2
Yoshizawa, T.3
Shirakawa, N.4
Akimitsu, J.5
-
39
-
-
0001013498
-
Photoluminescence studies of SiCnanocrystals embedded in a SiO2 matrix
-
Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng and S. J. Chua, “Photoluminescence studies of SiCnanocrystals embedded in a SiO2 matrix”, Chem. Phys. Lett. 339(5–6), 319–322 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00308-6
-
(2001)
Chem. Phys. Lett.
, vol.339
, Issue.5-6
, pp. 319-322
-
-
Guo, Y.P.1
Zheng, J.C.2
Wee, A.T.S.3
Huan, C.H.A.4
Li, K.5
Pan, J.S.6
Feng, Z.C.7
Chua, S.J.8
-
40
-
-
58149184031
-
Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies
-
Jingkun Jiang, Günter Oberdörster, Pratim Biswas “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies”, J. Nanopart. Res. 11(1), 77–89 (2009). http://dx.doi.org/10.1007/s11051-008-9446-4
-
(2009)
J. Nanopart. Res.
, vol.11
, Issue.1
, pp. 77-89
-
-
Jiang, J.1
Oberdörster, G.2
Biswas, P.3
-
41
-
-
67651002623
-
pH-dependent surface charging and points of zero charge. IV. Update and new approach
-
M. Kosmulski, “pH-dependent surface charging and points of zero charge. IV. Update and new approach”, J.Colloid Interface Sci. 337(2), 439–448 (2009). http://dx.doi.org/10.1016/j.jcis.2009.04.072
-
(2009)
J.Colloid Interface Sci.
, vol.337
, Issue.2
, pp. 439-448
-
-
Kosmulski, M.1
-
42
-
-
0037011319
-
The significance of the difference in the point of zero charge between rutile and anatase
-
M. Kosmulski, “The significance of the difference in the point of zero charge between rutile and anatase”, Adv. Colloid Interface Sci. 99(3), 255–264 (2002). http://dx.doi.org/10.1016/S0001-8686(02)00080-5
-
(2002)
Adv. Colloid Interface Sci.
, vol.99
, Issue.3
, pp. 255-264
-
-
Kosmulski, M.1
-
43
-
-
85017016182
-
Does nanoparticle activity depend upon size and crystal phase?
-
J. Jiang, G. Oberdörster, A. Elder, R. Gelein, P. Mercer and P. Biswas, “Does nanoparticle activity depend upon size and crystal phase?”, Nanotoxicology 2(1), 33–42 (2008). http://dx.doi.org/10.1080/17435390701882478
-
(2008)
Nanotoxicology
, vol.2
, Issue.1
, pp. 33-42
-
-
Jiang, J.1
Oberdörster, G.2
Elder, A.3
Gelein, R.4
Mercer, P.5
Biswas, P.6
-
44
-
-
8344226943
-
Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH
-
Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin and A. B. Tomson, “Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH”, Langmuir 20(22), 9585–9593 (2004).
-
(2004)
Langmuir
, vol.20
, Issue.22
, pp. 9585-9593
-
-
Gao, Y.1
Wahi, R.2
Kan, A.T.3
Falkner, J.C.4
Colvin, V.L.5
Tomson, A.B.6
-
45
-
-
33845936111
-
Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles
-
D. E. Giammar, C. J. Maus and L. Y. Xie, “Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles”, Environ. Eng. Sci. 24(1), 85–95 (2007). http://dx.doi.org/10.1089/ees.2007.24.85
-
(2007)
Environ. Eng. Sci.
, vol.24
, Issue.1
, pp. 85-95
-
-
Giammar, D.E.1
Maus, C.J.2
Xie, L.Y.3
-
46
-
-
79952694623
-
Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties
-
K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul and P. Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties”, Nanoscale Res. Lett. 6(27), 2–8 (2011). http://dx.doi.org/10.1007/s11671-010-9772-1
-
(2011)
Nanoscale Res. Lett.
, vol.6
, Issue.27
, pp. 2-8
-
-
Suttiponparnit, K.1
Jiang, J.2
Sahu, M.3
Suvachittanont, S.4
Charinpanitkul, T.5
Biswas, P.6
-
47
-
-
24944497592
-
Incorporation of oxide nanoparticles into barrier-type alumina film via anodic oxidation combined with electrophoretic deposition
-
K. Kamada, M. Tokutomi, N. Enomoto and H. Junichi, “Incorporation of oxide nanoparticles into barrier-type alumina film via anodic oxidation combined with electrophoretic deposition”, J. Mater. Chem. 15, 3388–3394 (2005). http://dx.doi.org/10.1039/B504364F
-
(2005)
J. Mater. Chem.
, vol.15
, pp. 3388-3394
-
-
Kamada, K.1
Tokutomi, M.2
Enomoto, N.3
Junichi, H.4
-
48
-
-
33749301843
-
Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions
-
A. Sclafani and J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem. 100 (32), 13655–13661 (1996). http://dx.doi.org/10.1021/jp9533584
-
(1996)
J. Phys. Chem.
, vol.100
, Issue.32
, pp. 13655-13661
-
-
Sclafani, A.1
Herrmann, J.M.2
-
49
-
-
84875757410
-
Synthesis of nanostructured copper-doped titania and its properties
-
Oman Zuas, Harry Budiman, “Synthesis of nanostructured copper-doped titania and its properties”, Nano-Micro Lett. 5 (1), 26–33 (2013). http://dx.doi.org/10.3786/nml.v5i1.p26-33
-
(2013)
Nano-Micro Lett.
, vol.5
, Issue.1
, pp. 26-33
-
-
Zuas, O.1
Budiman, H.2
-
50
-
-
24344502761
-
Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms
-
G. A. Waychunas, C. S. Kim and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms”, J. Nanopart. Res. 7(4–5), 409–433 (2005). http://dx.doi.org/10.1007/s11051-005-6931-x
-
(2005)
J. Nanopart. Res.
, vol.7
, Issue.4-5
, pp. 409-433
-
-
Waychunas, G.A.1
Kim, C.S.2
Banfield, J.F.3
-
51
-
-
29244480642
-
Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems
-
B. Gilbert and J. F. Banfield, “Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems”, Rev. Mineral. Geochem. 59, 109–155 (2005). http://dx.doi.org/10.2138/rmg.2005.59.6
-
(2005)
Rev. Mineral. Geochem.
, vol.59
, pp. 109-155
-
-
Gilbert, B.1
Banfield, J.F.2
-
52
-
-
84255168950
-
Nanofluids for heat transfer: an engineering approach
-
E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Nanofluids for heat transfer: an engineering approach” Nanoscale Res. Lett. 6(182), 2–7 (2011). http://dx.doi.org/10.1186/1556-276X-6-182
-
(2011)
Nanoscale Res. Lett.
, vol.6
, Issue.182
, pp. 2-7
-
-
Timofeeva, E.V.1
Yu, W.2
France, D.M.3
Singh, D.4
Routbort, J.L.5
-
53
-
-
36248987328
-
Temperature and particle-size dependent viscosity data for waterbased nanofluids — hysteresis phenomenon
-
C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. A. Mintsa, “Temperature and particle-size dependent viscosity data for waterbased nanofluids — hysteresis phenomenon”, Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007). http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.02.004
-
(2007)
Int. J. Heat Fluid Flow
, vol.28
, Issue.6
, pp. 1492-1506
-
-
Nguyen, C.1
Desgranges, F.2
Roy, G.3
Galanis, N.4
Mare, T.5
Boucher, S.6
Mintsa, H.A.7
-
54
-
-
34848822926
-
Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids
-
P. K. Namburu, D. P. Kulkarni, A. Dandekar and D. K. Das, “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids”, Micro NanoLett. 2(3), 67–71 (2007). http://dx.doi.org/10.1049/mnl:20070037
-
(2007)
Micro NanoLett.
, vol.2
, Issue.3
, pp. 67-71
-
-
Namburu, P.K.1
Kulkarni, D.P.2
Dandekar, A.3
Das, D.K.4
-
55
-
-
77951136264
-
Viscosity of alumina nanoparticles dispersed in car engine coolant
-
M. Kole and T. K. Dey, “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Exp. Therm. Fluid Sci. 34(6), 677–683 (2010). http://dx.doi.org/10.1016/j.expthermflusci.2009.12.009
-
(2010)
Exp. Therm. Fluid Sci.
, vol.34
, Issue.6
, pp. 677-683
-
-
Kole, M.1
Dey, T.K.2
|