-
1
-
-
77249123926
-
Selfassembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules
-
J. Yu, D. Javier, M. A. Yaseen, N. Nitin, R. Richards-Kortum, B. Anvari and M. S. Wong, “Selfassembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules”, J. Am. Chem. Soc. 132(6), 1929–1938 (2010). http://dx.doi.org/10.1021/ja908139y
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.6
, pp. 1929-1938
-
-
Yu, J.1
Javier, D.2
Yaseen, M.A.3
Nitin, N.4
Richards-Kortum, R.5
Anvari, B.6
Wong, M.S.7
-
2
-
-
78650905600
-
Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells
-
J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh and S. Haam, “Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 50(2), 441–444 (2011). http://dx.doi.org/10.1002/anie.201005075
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, Issue.2
, pp. 441-444
-
-
Yang, J.1
Choi, J.2
Bang, D.3
Kim, E.4
Lim, E.K.5
Park, H.6
Suh, J.S.7
Lee, K.8
Yoo, K.H.9
Kim, E.K.10
Huh, Y.M.11
Haam, S.12
-
3
-
-
84860799395
-
Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy
-
X. Wang, C. Wang, L. Cheng, S.-T. Lee and Z. Liu, “Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy”, J. Am. Chem. Soc. 134(17), 7414–7422 (2012). http://dx.doi.org/10.1021/ja300140c
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.17
, pp. 7414-7422
-
-
Wang, X.1
Wang, C.2
Cheng, L.3
Lee, S.-T.4
Liu, Z.5
-
4
-
-
78149346111
-
Carbon nanotubes in cancer theragnosis
-
V. S. Thakare, M. Das, A. K. Jain, S. Patil and S. Jain, “Carbon nanotubes in cancer theragnosis”, Nanomedicine 5(8), 1277–1301 (2010). http://dx.doi.org/10.2217/nnm.10.95
-
(2010)
Nanomedicine
, vol.5
, Issue.8
, pp. 1277-1301
-
-
Thakare, V.S.1
Das, M.2
Jain, A.K.3
Patil, S.4
Jain, S.5
-
5
-
-
84862815513
-
Antitumor immunologically modified carbon nanotubes for photothermal therapy
-
F. Zhou, S. Wu, S. Song, W. R. Chen, D. E. Resasco and D. Xing, “Antitumor immunologically modified carbon nanotubes for photothermal therapy”, Biomaterials 33(11), 3235–3242 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.12.029
-
(2012)
Biomaterials
, vol.33
, Issue.11
, pp. 3235-3242
-
-
Zhou, F.1
Wu, S.2
Song, S.3
Chen, W.R.4
Resasco, D.E.5
Xing, D.6
-
6
-
-
79955391283
-
Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy
-
J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, V. Daniel and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy”, J. Am. Chem. Soc. 133(17), 6825–6831 (2011). http://dx.doi.org/10.1021/ja2010175
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.17
, pp. 6825-6831
-
-
Robinson, J.T.1
Tabakman, S.M.2
Liang, Y.3
Wang, H.4
Casalongue, H.S.5
Daniel, V.6
Dai, H.7
-
7
-
-
84859151970
-
Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease
-
M. Li, X. Yang, J. Ren, K. Qu and X. Qu, “Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease”, Adv. Mater. 24(13), 1722–1728 (2012). http://dx.doi.org/10.1002/adma.201104864
-
(2012)
Adv. Mater.
, vol.24
, Issue.13
, pp. 1722-1728
-
-
Li, M.1
Yang, X.2
Ren, J.3
Qu, K.4
Qu, X.5
-
8
-
-
84859589244
-
Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles
-
K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles”, Adv. Mater. 24(14), 1868–1872 (2012). http://dx.doi.org/10.1002/adma.201104964
-
(2012)
Adv. Mater.
, vol.24
, Issue.14
, pp. 1868-1872
-
-
Yang, K.1
Hu, L.2
Ma, X.3
Ye, S.4
Cheng, L.5
Shi, X.6
Li, C.7
Li, Y.8
Liu, Z.9
-
9
-
-
84855740569
-
The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power
-
K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang and Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials. 33(7), 2206–2214 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.11.064
-
(2012)
Biomaterials.
, vol.33
, Issue.7
, pp. 2206-2214
-
-
Yang, K.1
Wan, J.2
Zhang, S.3
Tian, B.4
Zhang, Y.5
Liu, Z.6
-
10
-
-
79951879265
-
Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo
-
B. Jang, J. Y. Park, C. H. Tung, I. H. Kim and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo”, ACS Nano. 5(2), 1086–1094 (2011). http://dx.doi.org/10.1021/nn102722z
-
(2011)
ACS Nano.
, vol.5
, Issue.2
, pp. 1086-1094
-
-
Jang, B.1
Park, J.Y.2
Tung, C.H.3
Kim, I.H.4
Choi, Y.5
-
11
-
-
63449129301
-
Gold nanorod/Fe3O4nanoparticle nano-pearlnecklaces for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells
-
C. G. Wang, J. Chen, T. Talavage and J. Irudayaraj, “Gold nanorod/Fe3O4nanoparticle nano-pearlnecklaces for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009). http://dx.doi.org/10.1002/anie.200805282
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, Issue.15
, pp. 2759-2763
-
-
Wang, C.G.1
Chen, J.2
Talavage, T.3
Irudayaraj, J.4
-
12
-
-
84863338085
-
Mesoporous silicacoated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment
-
Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu and C. Chen, “Mesoporous silicacoated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment”, Adv. Mater. 24(11), 1418–1423 (2012). http://dx.doi.org/10.1002/adma.201104714
-
(2012)
Adv. Mater.
, vol.24
, Issue.11
, pp. 1418-1423
-
-
Zhang, Z.1
Wang, L.2
Wang, J.3
Jiang, X.4
Li, X.5
Hu, Z.6
Ji, Y.7
Wu, X.8
Chen, C.9
-
13
-
-
84863011363
-
Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light
-
H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, “Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light”, Adv. Mater. 24(6), 755–761 (2012). http://dx.doi.org/10.1002/adma.201103343
-
(2012)
Adv. Mater.
, vol.24
, Issue.6
, pp. 755-761
-
-
Liu, H.1
Liu, T.2
Wu, X.3
Li, L.4
Tan, L.5
Chen, D.6
Tang, F.7
-
14
-
-
78751545634
-
Multifunctional gold nanoshells on silica nanorattles: aplatform for the combination of photothermal therapy and chemotherapy with low systemic toxicity
-
H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu and F. Tang, “Multifunctional gold nanoshells on silica nanorattles: aplatform for the combination of photothermal therapy and chemotherapy with low systemic toxicity”, Angew. Chem. Int. Ed. 50(4), 891–895 (2011). http://dx.doi.org/10.1002/anie.201002820
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, Issue.4
, pp. 891-895
-
-
Liu, H.1
Chen, D.2
Li, L.3
Liu, T.4
Tan, L.5
Wu, X.6
Tang, F.7
-
15
-
-
80054745359
-
Gold nanocages: from synthesis to theranostic applications
-
Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho and P. K. Brown, “Gold nanocages: from synthesis to theranostic applications”, Acc. Chem. Res. 44(10), 914–924 (2011). http://dx.doi.org/10.1021/ar200061q
-
(2011)
Acc. Chem. Res.
, vol.44
, Issue.10
, pp. 914-924
-
-
Xia, Y.1
Li, W.2
Cobley, C.M.3
Chen, J.4
Xia, X.5
Zhang, Q.6
Yang, M.7
Cho, E.C.8
Brown, P.K.9
-
16
-
-
77950671121
-
Gold nanocages as photothermal transducers for cancer treatment
-
J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment”, Small 6(7), 811–817 (2010). http://dx.doi.org/10.1002/smll.200902216
-
(2010)
Small
, vol.6
, Issue.7
, pp. 811-817
-
-
Chen, J.1
Glaus, C.2
Laforest, R.3
Zhang, Q.4
Yang, M.5
Gidding, M.6
Welch, M.J.7
Xia, Y.8
-
17
-
-
84863912661
-
TAT peptidefunctionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance
-
H. Yuan, A. M. Fales and T. Vo-Dinh, “TAT peptidefunctionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance”, J. Am. Chem. Soc. 134 (28), 11358–11361 (2012). http://dx.doi.org/10.1021/ja304180y
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.28
, pp. 11358-11361
-
-
Yuan, H.1
Fales, A.M.2
Vo-Dinh, T.3
-
18
-
-
78650626082
-
Freestanding palladium nanosheets with plasmonic and catalytic properties
-
X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties”, Nat. Nanotechnol. 6(1), 28–32 (2011). http://dx.doi.org/10.1038/nnano.2010.235
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.1
, pp. 28-32
-
-
Huang, X.Q.1
Tang, S.H.2
Mu, X.L.3
Dai, Y.4
Chen, G.X.5
Zhou, Z.Y.6
Ruan, F.X.7
Yang, Z.L.8
Zheng, N.F.9
-
19
-
-
84555163706
-
5nanocrystals: aphotothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo
-
5nanocrystals: aphotothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo”, ACS Nano 5(12), 9761–9771 (2011). http://dx.doi.org/10.1021/nn203293t
-
(2011)
ACS Nano
, vol.5
, Issue.12
, pp. 9761-9771
-
-
Tian, Q.1
Jiang, F.2
Zou, R.3
Liu, Q.4
Chen, Z.5
Zhu, M.6
Yang, S.7
Wang, J.8
Wang, J.9
Hu, J.10
-
20
-
-
84884872221
-
2core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment
-
2core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment”, Adv. Funct. Mater. 23(35), 4281–4292 (2013). http://dx.doi.org/10.1002/adfm.201203317
-
(2013)
Adv. Funct. Mater.
, vol.23
, Issue.35
, pp. 4281-4292
-
-
Song, G.1
Wang, Q.2
Wang, Y.3
Lv, G.4
Li, C.5
Zou, R.6
Chen, Z.7
Qin, Z.8
Huo, K.9
Hu, R.10
Hu, J.11
-
21
-
-
80051681891
-
Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells
-
Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells”, Adv. Mater. 23(31), 3542–3547 (2011). http://dx.doi.org/10.1002/adma.201101295
-
(2011)
Adv. Mater.
, vol.23
, Issue.31
, pp. 3542-3547
-
-
Tian, Q.1
Tang, M.2
Sun, Y.3
Zou, R.4
Chen, Z.5
Zhu, M.6
Yang, S.7
Wang, J.8
Wang, J.9
Hu, J.10
-
22
-
-
84878904070
-
2-xS core-shell nanoparticles for dualmodal imaging and photothermal therapy
-
2-xS core-shell nanoparticles for dualmodal imaging and photothermal therapy”, J. Am. Chem. Soc. 135(23), 8571–8577 (2013). http://dx.doi.org/10.1021/ja4013497
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.23
, pp. 8571-8577
-
-
Tian, Q.1
Hu, J.2
Zhu, Y.3
Zou, R.4
Chen, Z.5
Yang, S.6
Li, R.7
Su, Q.8
Han, Y.9
Liu, X.10
-
23
-
-
79958810593
-
Copper selenide nanocrystals for photothermal therapy
-
C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy”, Nano Lett. 11(6), 2560–2566 (2011). http://dx.doi.org/10.1021/nl201400z
-
(2011)
Nano Lett.
, vol.11
, Issue.6
, pp. 2560-2566
-
-
Hessel, C.M.1
Pattani, V.P.2
Rasch, M.3
Panthani, M.G.4
Koo, B.5
Tunnell, J.W.6
Korgel, B.A.7
-
24
-
-
78049361957
-
64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy
-
64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy”, J. Am. Chem. Soc. 132(43), 15351–15358 (2010). http://dx.doi.org/10.1021/ja106855m
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.43
, pp. 15351-15358
-
-
Zhou, M.1
Zhang, R.2
Huang, M.A.3
Lu, W.4
Song, S.L.5
Melancon, M.P.6
Tian, M.7
Liang, D.8
Li, C.9
-
25
-
-
84859141837
-
Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles
-
M. Shi, H. S. Kwon, Z. Peng, A. Elder and H. Yang, “Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles”, ACS Nano. 6(3), 2157–2164 (2012). http://dx.doi.org/10.1021/nn300445d
-
(2012)
ACS Nano.
, vol.6
, Issue.3
, pp. 2157-2164
-
-
Shi, M.1
Kwon, H.S.2
Peng, Z.3
Elder, A.4
Yang, H.5
-
26
-
-
2342433390
-
Formation of hollow nanocrystals through the nanoscale Kirkendall effect
-
Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science 304, 711–714 (2004). http://dx.doi.org/10.1126/science.1096566
-
(2004)
Science
, vol.304
, pp. 711-714
-
-
Yin, Y.1
Rioux, R.M.2
Erdonmez, C.K.3
Hughes, S.4
Somorjai, G.A.5
Alivisatos, A.P.6
-
27
-
-
80052550968
-
2-xS nanoparticles: from spheres to dodecahedrons
-
2-xS nanoparticles: from spheres to dodecahedrons”, Chem. Commun. 47(37), 10332–10334 (2011). http://dx.doi.org/10.1039/c1cc13803k
-
(2011)
Chem. Commun.
, vol.47
, Issue.37
, pp. 10332-10334
-
-
Li, W.1
Shavel, A.2
Guzman, R.3
Rubio-Garcia, J.4
Flox, C.5
Fan, J.6
Cadavid, D.7
Ibá≈nez, M.8
Arbiol, J.9
Morante, J.R.10
Cabot, A.11
-
28
-
-
77956910499
-
Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging
-
C. M. Hessel, M. R. Rasch, J. L. Hueso, B. W. Goodfellow, V. A. Akhavan, P. Puvanakrishnan, J. W. Tunnel and B. A. Korgel, “Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging”, Small 6(18), 2026–2034 (2010). http://dx.doi.org/10.1002/smll.201000825
-
(2010)
Small
, vol.6
, Issue.18
, pp. 2026-2034
-
-
Hessel, C.M.1
Rasch, M.R.2
Hueso, J.L.3
Goodfellow, B.W.4
Akhavan, V.A.5
Puvanakrishnan, P.6
Tunnel, J.W.7
Korgel, B.A.8
-
29
-
-
84876040774
-
49nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo
-
49nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo”, Adv. Mater. 25(14), 2095–2100 (2013). http://dx.doi.org/10.1002/adma.201204616
-
(2013)
Adv. Mater.
, vol.25
, Issue.14
, pp. 2095-2100
-
-
Chen, Z.1
Wang, Q.2
Wang, H.3
Zhang, L.4
Song, G.5
Song, L.6
Hu, J.7
Wang, H.8
Liu, J.9
Zhu, M.10
Zhao, D.11
|