-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:01, 2005.
-
(2005)
JMLR
, vol.6
, pp. 01
-
-
Ando, R.K.1
Zhang, T.2
-
2
-
-
84864063089
-
Multi-task feature learning
-
Vancouver, BC, Canada
-
A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, pages 41-48, Vancouver, BC, Canada, 2007.
-
(2007)
NIPS
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
4
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
Prague, Czech Republic
-
J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, pages 440-447, Prague, Czech republic, 2007.
-
(2007)
ACL
, pp. 440-447
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
5
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
6
-
-
71149094644
-
A convex formulation for learning shared structures from multiple tasks
-
Montreal, QC, Canada
-
J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In ICML, pages 137-144, Montreal, QC, Canada, 2009.
-
(2009)
ICML
, pp. 137-144
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
7
-
-
80052677096
-
Integrating low-rank and group-sparse structures for robust multi-task learning
-
San Diego, CA, United States
-
J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In ACM SIGKDD, pages 42-50, San Diego, CA, United states, 2011.
-
(2011)
ACM SIGKDD
, pp. 42-50
-
-
Chen, J.1
Zhou, J.2
Ye, J.3
-
8
-
-
84863349934
-
Translated learning: Transfer learning across different feature spaces
-
W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning across different feature spaces. In NIPS, pages 353-360, 2008.
-
(2008)
NIPS
, pp. 353-360
-
-
Dai, W.1
Chen, Y.2
Xue, G.-R.3
Yang, Q.4
Yu, Y.5
-
9
-
-
33749575326
-
Orthogonal nonnegative matrix t-factorizations for clustering
-
ACM
-
C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In ACM SIGKDD, pages 126-135. ACM, 2006.
-
(2006)
ACM SIGKDD
, pp. 126-135
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
10
-
-
84867113087
-
Learning with augmented features for heterogeneous domain adaptation
-
L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, 2012.
-
(2012)
ICML
-
-
Duan, L.1
Xu, D.2
Tsang, I.W.3
-
11
-
-
12244250351
-
Regularized multi-task learning
-
Seattle, WA, United States
-
T. Evgeniou and M. Pontil. Regularized multi-task learning. In ACM SIGKDD, pages 109-117, Seattle, WA, United states, 2004.
-
(2004)
ACM SIGKDD
, pp. 109-117
-
-
Evgeniou, T.1
Pontil, M.2
-
12
-
-
84866007553
-
Robust multi-task feature learning
-
ACM
-
P. Gong, J. Ye, and C. Zhang. Robust multi-task feature learning. In ACM SIGKDD, pages 895-903. ACM, 2012.
-
(2012)
ACM SIGKDD
, pp. 895-903
-
-
Gong, P.1
Ye, J.2
Zhang, C.3
-
13
-
-
80053436238
-
A graph-based framework for multi-task multi-view learning
-
Bellevue, WA, United States
-
J. He and R. Lawrence. A graph-based framework for multi-task multi-view learning. In ICML, pages 25-32, Bellevue, WA, United states, 2011.
-
(2011)
ICML
, pp. 25-32
-
-
He, J.1
Lawrence, R.2
-
14
-
-
84959910535
-
Linking heterogeneous input spaces with pivots for multi-task learning
-
J. He, Y. Liu, and Q. Yang. Linking heterogeneous input spaces with pivots for multi-task learning. In SDM, 2014.
-
(2014)
SDM
-
-
He, J.1
Liu, Y.2
Yang, Q.3
-
15
-
-
85162062975
-
A dirty model for multi-task learning
-
Vancouver, BC, Canada
-
A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In NIPS, Vancouver, BC, Canada, 2010.
-
(2010)
NIPS
-
-
Jalali, A.1
Ravikumar, P.2
Sanghavi, S.3
Ruan, C.4
-
16
-
-
84886471848
-
Shared structure learning for multiple tasks with multiple views
-
Prague, Czech Republic
-
X. Jin, F. Zhuang, S. Wang, Q. He, and Z. Shi. Shared structure learning for multiple tasks with multiple views. In ECML PKDD, volume 8189 LNAI, pages 353-368, Prague, Czech republic, 2013.
-
(2013)
ECML PKDD, Volume 8189 LNAI
, pp. 353-368
-
-
Jin, X.1
Zhuang, F.2
Wang, S.3
He, Q.4
Shi, Z.5
-
17
-
-
84937598815
-
Multi-task multi-view learning for heterogeneous tasks
-
New York, NY, USA ACM
-
X. Jin, F. Zhuang, H. Xiong, C. Du, P. Luo, and Q. He. Multi-task multi-view learning for heterogeneous tasks. In CIKM, pages 441-450, New York, NY, USA, 2014. ACM.
-
(2014)
CIKM
, pp. 441-450
-
-
Jin, X.1
Zhuang, F.2
Xiong, H.3
Du, C.4
Luo, P.5
He, Q.6
-
18
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
San Francisco, CA, USA
-
T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, San Francisco, CA, USA, 1999.
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
19
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, pages 521-528, 2011.
-
(2011)
ICML
, pp. 521-528
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
20
-
-
84873433011
-
Towards semantic knowledge propagation from text corpus to web images
-
ACM
-
G.-J. Qi, C. Aggarwal, and T. Huang. Towards semantic knowledge propagation from text corpus to web images. In WWW, pages 297-306. ACM, 2011.
-
(2011)
WWW
, pp. 297-306
-
-
Qi, G.-J.1
Aggarwal, C.2
Huang, T.3
-
21
-
-
83855165736
-
Bayesian multitask classification with Gaussian process priors
-
G. Skolidis and G. Sanguinetti. Bayesian multitask classification with gaussian process priors. IEEE Transactions on Neural Networks, 22(12):2011-2021, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.12
, pp. 2011-2021
-
-
Skolidis, G.1
Sanguinetti, G.2
-
22
-
-
34547975729
-
Robust multi-task learning with t-processes
-
Corvalis, OR, United States
-
S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In ICML, volume 227, pages 1103-1110, Corvalis, OR, United states, 2007.
-
(2007)
ICML
, vol.227
, pp. 1103-1110
-
-
Yu, S.1
Tresp, V.2
Yu, K.3
-
23
-
-
84866049136
-
Inductive multi-task learning with multiple view data
-
Beijing, China
-
J. Zhang and J. Huan. Inductive multi-task learning with multiple view data. In ACM SIGKDD, pages 543-551, Beijing, China, 2012.
-
(2012)
ACM SIGKDD
, pp. 543-551
-
-
Zhang, J.1
Huan, J.2
-
24
-
-
80055050343
-
Multi-task learning in heterogeneous feature spaces
-
San Francisco, CA, United States
-
Y. Zhang and D.-Y. Yeung. Multi-task learning in heterogeneous feature spaces. In AAAI, volume 1, pages 574-579, San Francisco, CA, United states, 2011.
-
(2011)
AAAI
, vol.1
, pp. 574-579
-
-
Zhang, Y.1
Yeung, D.-Y.2
-
25
-
-
85093314939
-
Heterogeneous transfer learning for image classification
-
Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang. Heterogeneous transfer learning for image classification. In AAAI, 2011.
-
(2011)
AAAI
-
-
Zhu, Y.1
Chen, Y.2
Lu, Z.3
Pan, S.J.4
Xue, G.-R.5
Yu, Y.6
Yang, Q.7
|