메뉴 건너뛰기




Volumn 19-23-Oct-2015, Issue , 2015, Pages 1847-1850

Heterogeneous multi-task semantic feature learning for classification

Author keywords

[No Author keywords available]

Indexed keywords

FACTORIZATION; KNOWLEDGE MANAGEMENT; LINEARIZATION; MATRIX ALGEBRA; SEMANTICS;

EID: 84958243165     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2806416.2806644     Document Type: Conference Paper
Times cited : (19)

References (25)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:01, 2005.
    • (2005) JMLR , vol.6 , pp. 01
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning
    • Vancouver, BC, Canada
    • A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, pages 41-48, Vancouver, BC, Canada, 2007.
    • (2007) NIPS , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Prague, Czech Republic
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, pages 440-447, Prague, Czech republic, 2007.
    • (2007) ACL , pp. 440-447
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 5
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 6
    • 71149094644 scopus 로고    scopus 로고
    • A convex formulation for learning shared structures from multiple tasks
    • Montreal, QC, Canada
    • J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In ICML, pages 137-144, Montreal, QC, Canada, 2009.
    • (2009) ICML , pp. 137-144
    • Chen, J.1    Tang, L.2    Liu, J.3    Ye, J.4
  • 7
    • 80052677096 scopus 로고    scopus 로고
    • Integrating low-rank and group-sparse structures for robust multi-task learning
    • San Diego, CA, United States
    • J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In ACM SIGKDD, pages 42-50, San Diego, CA, United states, 2011.
    • (2011) ACM SIGKDD , pp. 42-50
    • Chen, J.1    Zhou, J.2    Ye, J.3
  • 8
    • 84863349934 scopus 로고    scopus 로고
    • Translated learning: Transfer learning across different feature spaces
    • W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning across different feature spaces. In NIPS, pages 353-360, 2008.
    • (2008) NIPS , pp. 353-360
    • Dai, W.1    Chen, Y.2    Xue, G.-R.3    Yang, Q.4    Yu, Y.5
  • 9
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • ACM
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In ACM SIGKDD, pages 126-135. ACM, 2006.
    • (2006) ACM SIGKDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 10
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, 2012.
    • (2012) ICML
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 11
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • Seattle, WA, United States
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In ACM SIGKDD, pages 109-117, Seattle, WA, United states, 2004.
    • (2004) ACM SIGKDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 12
    • 84866007553 scopus 로고    scopus 로고
    • Robust multi-task feature learning
    • ACM
    • P. Gong, J. Ye, and C. Zhang. Robust multi-task feature learning. In ACM SIGKDD, pages 895-903. ACM, 2012.
    • (2012) ACM SIGKDD , pp. 895-903
    • Gong, P.1    Ye, J.2    Zhang, C.3
  • 13
    • 80053436238 scopus 로고    scopus 로고
    • A graph-based framework for multi-task multi-view learning
    • Bellevue, WA, United States
    • J. He and R. Lawrence. A graph-based framework for multi-task multi-view learning. In ICML, pages 25-32, Bellevue, WA, United states, 2011.
    • (2011) ICML , pp. 25-32
    • He, J.1    Lawrence, R.2
  • 14
    • 84959910535 scopus 로고    scopus 로고
    • Linking heterogeneous input spaces with pivots for multi-task learning
    • J. He, Y. Liu, and Q. Yang. Linking heterogeneous input spaces with pivots for multi-task learning. In SDM, 2014.
    • (2014) SDM
    • He, J.1    Liu, Y.2    Yang, Q.3
  • 15
    • 85162062975 scopus 로고    scopus 로고
    • A dirty model for multi-task learning
    • Vancouver, BC, Canada
    • A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In NIPS, Vancouver, BC, Canada, 2010.
    • (2010) NIPS
    • Jalali, A.1    Ravikumar, P.2    Sanghavi, S.3    Ruan, C.4
  • 16
    • 84886471848 scopus 로고    scopus 로고
    • Shared structure learning for multiple tasks with multiple views
    • Prague, Czech Republic
    • X. Jin, F. Zhuang, S. Wang, Q. He, and Z. Shi. Shared structure learning for multiple tasks with multiple views. In ECML PKDD, volume 8189 LNAI, pages 353-368, Prague, Czech republic, 2013.
    • (2013) ECML PKDD, Volume 8189 LNAI , pp. 353-368
    • Jin, X.1    Zhuang, F.2    Wang, S.3    He, Q.4    Shi, Z.5
  • 17
    • 84937598815 scopus 로고    scopus 로고
    • Multi-task multi-view learning for heterogeneous tasks
    • New York, NY, USA ACM
    • X. Jin, F. Zhuang, H. Xiong, C. Du, P. Luo, and Q. He. Multi-task multi-view learning for heterogeneous tasks. In CIKM, pages 441-450, New York, NY, USA, 2014. ACM.
    • (2014) CIKM , pp. 441-450
    • Jin, X.1    Zhuang, F.2    Xiong, H.3    Du, C.4    Luo, P.5    He, Q.6
  • 18
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • San Francisco, CA, USA
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, San Francisco, CA, USA, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 19
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, pages 521-528, 2011.
    • (2011) ICML , pp. 521-528
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 20
    • 84873433011 scopus 로고    scopus 로고
    • Towards semantic knowledge propagation from text corpus to web images
    • ACM
    • G.-J. Qi, C. Aggarwal, and T. Huang. Towards semantic knowledge propagation from text corpus to web images. In WWW, pages 297-306. ACM, 2011.
    • (2011) WWW , pp. 297-306
    • Qi, G.-J.1    Aggarwal, C.2    Huang, T.3
  • 21
    • 83855165736 scopus 로고    scopus 로고
    • Bayesian multitask classification with Gaussian process priors
    • G. Skolidis and G. Sanguinetti. Bayesian multitask classification with gaussian process priors. IEEE Transactions on Neural Networks, 22(12):2011-2021, 2011.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.12 , pp. 2011-2021
    • Skolidis, G.1    Sanguinetti, G.2
  • 22
    • 34547975729 scopus 로고    scopus 로고
    • Robust multi-task learning with t-processes
    • Corvalis, OR, United States
    • S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In ICML, volume 227, pages 1103-1110, Corvalis, OR, United states, 2007.
    • (2007) ICML , vol.227 , pp. 1103-1110
    • Yu, S.1    Tresp, V.2    Yu, K.3
  • 23
    • 84866049136 scopus 로고    scopus 로고
    • Inductive multi-task learning with multiple view data
    • Beijing, China
    • J. Zhang and J. Huan. Inductive multi-task learning with multiple view data. In ACM SIGKDD, pages 543-551, Beijing, China, 2012.
    • (2012) ACM SIGKDD , pp. 543-551
    • Zhang, J.1    Huan, J.2
  • 24
    • 80055050343 scopus 로고    scopus 로고
    • Multi-task learning in heterogeneous feature spaces
    • San Francisco, CA, United States
    • Y. Zhang and D.-Y. Yeung. Multi-task learning in heterogeneous feature spaces. In AAAI, volume 1, pages 574-579, San Francisco, CA, United states, 2011.
    • (2011) AAAI , vol.1 , pp. 574-579
    • Zhang, Y.1    Yeung, D.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.