-
1
-
-
84934916291
-
Noble metal-free hydrogen evolution catalysts for water splitting
-
Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180
-
(2015)
Chem Soc Rev
, vol.44
, pp. 5148-5180
-
-
Zou, X.1
Zhang, Y.2
-
2
-
-
84901665086
-
Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
-
Morales-Guio CG, Stern LA, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569
-
(2014)
Chem Soc Rev
, vol.43
, pp. 6555-6569
-
-
Morales-Guio, C.G.1
Stern, L.A.2
Hu, X.3
-
3
-
-
84883854631
-
Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
-
Chen WF, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49:8896–8909
-
(2013)
Chem Commun
, vol.49
, pp. 8896-8909
-
-
Chen, W.F.1
Muckerman, J.T.2
Fujita, E.3
-
4
-
-
84942279240
-
Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media
-
Long X, Li GX, Wang ZL, Zhu HY, Zhang T, Xiao S, Guo WY, Yang SH (2015) Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J Am Chem Soc 137:11900–11903
-
(2015)
J Am Chem Soc
, vol.137
, pp. 11900-11903
-
-
Long, X.1
Li, G.X.2
Wang, Z.L.3
Zhu, H.Y.4
Zhang, T.5
Xiao, S.6
Guo, W.Y.7
Yang, S.H.8
-
5
-
-
84955193180
-
2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production
-
2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew Chem Int Ed 54:1–6
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 1-6
-
-
Ma, F.X.1
Wu, H.B.2
Xia, B.Y.3
Xu, C.Y.4
Lou, X.W.5
-
6
-
-
84908448054
-
Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution
-
Xie JF, Li S, Zhang XD, Zhang JJ, Wang RX, Zhang H, Pan BC, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615–4620
-
(2014)
Chem Sci
, vol.5
, pp. 4615-4620
-
-
Xie, J.F.1
Li, S.2
Zhang, X.D.3
Zhang, J.J.4
Wang, R.X.5
Zhang, H.6
Pan, B.C.7
Xie, Y.8
-
7
-
-
84904570870
-
Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
-
Xiao P, Sk MA, Thia L, Ge XM, Lim RJ, Wang JY, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7:2624–2629
-
(2014)
Energy Environ Sci
, vol.7
, pp. 2624-2629
-
-
Xiao, P.1
Sk, M.A.2
Thia, L.3
Ge, X.M.4
Lim, R.J.5
Wang, J.Y.6
Lim, K.H.7
Wang, X.8
-
8
-
-
84919913566
-
2 nanoplates fabricated within one-dimensional carbon nanofibers with thermosensitive morphology: high-performance electrocatalysts for the hydrogen evolution reaction
-
2 nanoplates fabricated within one-dimensional carbon nanofibers with thermosensitive morphology: high-performance electrocatalysts for the hydrogen evolution reaction. ACS Appl Mater Inter 6:22126–22137
-
(2014)
ACS Appl Mater Inter
, vol.6
, pp. 22126-22137
-
-
Zhu, H.1
Lyu, F.L.2
Du, M.L.3
Zhang, M.4
Wang, Q.F.5
Yao, J.M.6
Guo, B.C.7
-
9
-
-
84940055494
-
Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting
-
Liang HF, Li LS, Meng F, Dang LN, Zhuo JQ, Forticaux A, Wang ZC, Jin S (2015) Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem Mater 27:5702–5711
-
(2015)
Chem Mater
, vol.27
, pp. 5702-5711
-
-
Liang, H.F.1
Li, L.S.2
Meng, F.3
Dang, L.N.4
Zhuo, J.Q.5
Forticaux, A.6
Wang, Z.C.7
Jin, S.8
-
11
-
-
84864228812
-
Eutectic solidification applied to nanofabrication: a strategy to prepare large-scale tungsten carbide nanowalls
-
Sun Y, Cui H, Jin SX, Wang CX (2012) Eutectic solidification applied to nanofabrication: a strategy to prepare large-scale tungsten carbide nanowalls. J Mater Chem 22:16566–16571
-
(2012)
J Mater Chem
, vol.22
, pp. 16566-16571
-
-
Sun, Y.1
Cui, H.2
Jin, S.X.3
Wang, C.X.4
-
12
-
-
84887105650
-
2-graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell
-
2-graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochim Acta 114:173–179
-
(2013)
Electrochim Acta
, vol.114
, pp. 173-179
-
-
Duan, X.L.1
Gao, Z.Y.2
Chang, J.L.3
Wu, D.P.4
Ma, P.F.5
He, J.J.6
Xu, F.7
Gao, S.Y.8
Jiang, K.9
-
13
-
-
85027931039
-
4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties
-
4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 27:4097–4101
-
(2015)
Adv Mater
, vol.27
, pp. 4097-4101
-
-
Ma, F.X.1
Hu, H.2
Wu, H.B.3
Xu, C.Y.4
Xu, Z.C.5
Zhen, L.6
-
14
-
-
84942133896
-
Multi-shelled hollow micro-/nanostructures
-
Qi J, Lai XY, Wang JY, Tang HJ, Ren H, Yang Y, Jin Q, Zhang LJ, Yu RB, Ma GH (2015) Multi-shelled hollow micro-/nanostructures. Chem Soc Rev 44:6749–6773
-
(2015)
Chem Soc Rev
, vol.44
, pp. 6749-6773
-
-
Qi, J.1
Lai, X.Y.2
Wang, J.Y.3
Tang, H.J.4
Ren, H.5
Yang, Y.6
Jin, Q.7
Zhang, L.J.8
Yu, R.B.9
Ma, G.H.10
-
15
-
-
33750453016
-
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
-
Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913
-
(2006)
Nat Mater
, vol.5
, pp. 909-913
-
-
Greeley, J.1
Jaramillo, T.F.2
Bonde, J.3
Chorkendorff, I.B.4
Nørskov, J.K.5
-
17
-
-
84889254454
-
Electrodeposited cobalt-sulfide catalyst for electrochemical and photo electrochemical hydrogen generation from water
-
Sun YJ, Liu C, Grauer DC, Yano JK, Long JR, Yang PD, Chang CJ (2013) Electrodeposited cobalt-sulfide catalyst for electrochemical and photo electrochemical hydrogen generation from water. J Am Chem Soc 135:17699–17702
-
(2013)
J Am Chem Soc
, vol.135
, pp. 17699-17702
-
-
Sun, Y.J.1
Liu, C.2
Grauer, D.C.3
Yano, J.K.4
Long, J.R.5
Yang, P.D.6
Chang, C.J.7
|