-
1
-
-
0028496468
-
Learning Boolean concepts in the presence of many irrelevant features
-
H. Almuallim and T.G. Dietterich. Learning Boolean concepts in the presence of many irrelevant features. Artificial Intelligence, 69(1-2), 279-306, 1994.
-
(1994)
Artificial Intelligence
, vol.69
, Issue.1-2
, pp. 279-306
-
-
Almuallim, H.1
Dietterich, T.G.2
-
3
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P.D. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.D.2
-
4
-
-
0023646365
-
-
A. Blumer, A. Ehrenfeucht, D. Hanssler, and M.K. Warmuth. Occam's razor. Information Processing Letters, 24:377-380,1987.
-
(1987)
Occam's Razor. Information Processing Letters
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Hanssler, D.3
Warmuth, M.K.4
-
5
-
-
0026883136
-
On the necessity of Occam algorithms
-
R. Bard and L. Pitt. On the necessity of Occam algorithms. Theoretical Computer Science, 100:157-184, 1992.
-
(1992)
Theoretical Computer Science
, vol.100
, pp. 157-184
-
-
Bard, R.1
Pitt, L.2
-
7
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
8
-
-
0006494007
-
An efficient membership-query algorithm for learning DNF with respect to the uniform distribution
-
IEEE Computer Society Press~ Los Alamitos, CA
-
Jeffrey Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. In Proceedings of the 35rd Annual Symposium on Foundations of Computer Science, pages 42-53. IEEE Computer Society Press~ Los Alamitos, CA, 1994.
-
(1994)
Proceedings of the 35Rd Annual Symposium on Foundations of Computer Science
, pp. 42-53
-
-
Jackson, J.1
-
9
-
-
84947723634
-
Lower bounds on learning decision lists and trees
-
T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bounds on learning decision lists and trees. In Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, 527-538, 1995.
-
(1995)
Proceedings of the 12Th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science
, pp. 527-538
-
-
Hancock, T.1
Jiang, T.2
Li, M.3
Tromp, J.4
-
10
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36:177-221, 1988.
-
(1988)
Artificial Intelligence
, vol.36
, pp. 177-221
-
-
Haussler, D.1
-
16
-
-
34250091945
-
Learning when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
18
-
-
1442267080
-
Learning decision lists
-
R.L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.
-
(1987)
Machine Learning
, vol.2
, Issue.3
, pp. 229-246
-
-
Rivest, R.L.1
-
19
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
20
-
-
0021518106
-
A theory of the learnable
-
L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
|