메뉴 건너뛰기




Volumn 309, Issue , 2016, Pages 56-65

An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

Author keywords

Mass transport; Modeling; Polymer electrolyte membrane electrolyzer

Indexed keywords

ELECTROLYTES; ELECTROLYTIC CELLS; FUEL CELLS; HYDROGEN PRODUCTION; MASS TRANSFER; MODELS; POLYELECTROLYTES; POLYMERS; PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC);

EID: 84957890876     PISSN: 03787753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpowsour.2016.01.012     Document Type: Review
Times cited : (169)

References (100)
  • 1
    • 57649107180 scopus 로고    scopus 로고
    • An overview of hydrogen production technologies
    • J.D. Holladay, J. Hu, D.L. King, and Y. Wang An overview of hydrogen production technologies Catal. Today 139 2009 244 260
    • (2009) Catal. Today , vol.139 , pp. 244-260
    • Holladay, J.D.1    Hu, J.2    King, D.L.3    Wang, Y.4
  • 2
    • 84867402726 scopus 로고    scopus 로고
    • Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies
    • Z. Wang, R.R. Roberts, G.F. Naterer, and K.S. Gabriel Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies Int. J. Hydrogen Energy 37 2012 16287 16301
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 16287-16301
    • Wang, Z.1    Roberts, R.R.2    Naterer, G.F.3    Gabriel, K.S.4
  • 3
    • 17044403421 scopus 로고    scopus 로고
    • PEM electrolysis for production of hydrogen from renewable energy sources
    • F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources Sol. Energy 78 2005 661 669
    • (2005) Sol. Energy , vol.78 , pp. 661-669
    • Barbir, F.1
  • 4
    • 84866995209 scopus 로고    scopus 로고
    • An overview of hydrogen gas production from solar energy
    • S. Koumi Ngoh, and D. Njomo An overview of hydrogen gas production from solar energy Renew. Sustain. Energy Rev. 16 2012 6782 6792
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 6782-6792
    • Koumi Ngoh, S.1    Njomo, D.2
  • 5
    • 33744933225 scopus 로고    scopus 로고
    • A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells
    • J. Pettersson, B. Ramsey, and D. Harrison A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells J. Power Sources 157 2006 28 34
    • (2006) J. Power Sources , vol.157 , pp. 28-34
    • Pettersson, J.1    Ramsey, B.2    Harrison, D.3
  • 6
    • 29244487083 scopus 로고    scopus 로고
    • Pure hydrogen production by PEM electrolysis for hydrogen energy
    • S. Grigoriev, V. Porembsky, and V. Fateev Pure hydrogen production by PEM electrolysis for hydrogen energy Int. J. Hydrogen Energy 31 2006 171 175
    • (2006) Int. J. Hydrogen Energy , vol.31 , pp. 171-175
    • Grigoriev, S.1    Porembsky, V.2    Fateev, V.3
  • 8
    • 33845604003 scopus 로고    scopus 로고
    • Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers - reduced energy consumption by improved electrocatalysis
    • A. Marshall, B. Børresen, G. Hagen, M. Tsypkin, and R. Tunold Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers - reduced energy consumption by improved electrocatalysis Energy 32 2007 431 436
    • (2007) Energy , vol.32 , pp. 431-436
    • Marshall, A.1    Børresen, B.2    Hagen, G.3    Tsypkin, M.4    Tunold, R.5
  • 10
    • 84878017153 scopus 로고    scopus 로고
    • Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer
    • H. Ito, T. Maeda, A. Nakano, A. Kato, and T. Yoshida Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer Electrochim. Acta 100 2013 242 248
    • (2013) Electrochim. Acta , vol.100 , pp. 242-248
    • Ito, H.1    Maeda, T.2    Nakano, A.3    Kato, A.4    Yoshida, T.5
  • 13
    • 84956594790 scopus 로고    scopus 로고
    • Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis
    • M. Langemann, D.L. Fritz, M. Müller, and D. Stolten Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis Int. J. Hydrogen Energy 40 2015 11385 11391
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 11385-11391
    • Langemann, M.1    Fritz, D.L.2    Müller, M.3    Stolten, D.4
  • 14
    • 67849133346 scopus 로고    scopus 로고
    • Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell
    • J. Nie, Y. Chen, S. Cohen, B.D. Carter, and R.F. Boehm Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell Int. J. Therm. Sci. 48 2009 1914 1922
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 1914-1922
    • Nie, J.1    Chen, Y.2    Cohen, S.3    Carter, B.D.4    Boehm, R.F.5
  • 15
    • 84864964588 scopus 로고    scopus 로고
    • Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment
    • J.-T. Wang, W.-W. Wang, C. Wang, and Z.-Q. Mao Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment Int. J. Hydrogen Energy 37 2012 12069 12073
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 12069-12073
    • Wang, J.-T.1    Wang, W.-W.2    Wang, C.3    Mao, Z.-Q.4
  • 16
    • 77950295968 scopus 로고    scopus 로고
    • Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell
    • J. Nie, and Y. Chen Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell Int. J. Hydrogen Energy 35 2010 3183 3197
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 3183-3197
    • Nie, J.1    Chen, Y.2
  • 19
    • 79952443397 scopus 로고    scopus 로고
    • Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis
    • S.A. Grigoriev, M.S. Mamat, K.A. Dzhus, G.S. Walker, and P. Millet Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis Int. J. Hydrogen Energy 36 2011 4143 4147
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 4143-4147
    • Grigoriev, S.A.1    Mamat, M.S.2    Dzhus, K.A.3    Walker, G.S.4    Millet, P.5
  • 20
    • 69249148249 scopus 로고    scopus 로고
    • Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis
    • J. Cheng, H. Zhang, G. Chen, and Y. Zhang Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis Electrochim. Acta 54 2009 6250 6256
    • (2009) Electrochim. Acta , vol.54 , pp. 6250-6256
    • Cheng, J.1    Zhang, H.2    Chen, G.3    Zhang, Y.4
  • 21
    • 84898036116 scopus 로고    scopus 로고
    • Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis - an alternate approach
    • S. Ravichandran, R. Venkatkarthick, A. Sankari, S. Vasudevan, D. Jonas Davidson, and G. Sozhan Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis - an alternate approach Energy 68 2014 148 151
    • (2014) Energy , vol.68 , pp. 148-151
    • Ravichandran, S.1    Venkatkarthick, R.2    Sankari, A.3    Vasudevan, S.4    Jonas Davidson, D.5    Sozhan, G.6
  • 22
    • 33847271587 scopus 로고    scopus 로고
    • Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis
    • E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, and E. Budevski Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis Electrochim. Acta 52 2007 3889 3894
    • (2007) Electrochim. Acta , vol.52 , pp. 3889-3894
    • Slavcheva, E.1    Radev, I.2    Bliznakov, S.3    Topalov, G.4    Andreev, P.5    Budevski, E.6
  • 23
    • 38749094808 scopus 로고    scopus 로고
    • Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers
    • S.A. Grigoriev, P. Millet, and V.N. Fateev Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers J. Power Sources 177 2008 281 285
    • (2008) J. Power Sources , vol.177 , pp. 281-285
    • Grigoriev, S.A.1    Millet, P.2    Fateev, V.N.3
  • 25
    • 79957613438 scopus 로고    scopus 로고
    • Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers
    • S. Siracusano, V. Baglio, A. Stassi, R. Ornelas, V. Antonucci, and A.S. Aricò Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers Int. J. Hydrogen Energy 36 2011 7822 7831
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 7822-7831
    • Siracusano, S.1    Baglio, V.2    Stassi, A.3    Ornelas, R.4    Antonucci, V.5    Aricò, A.S.6
  • 27
    • 84883330461 scopus 로고    scopus 로고
    • Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane
    • S. Siracusano, V. Baglio, F. Lufrano, P. Staiti, and A.S. Aricò Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane J. Membr. Sci. 448 2013 209 214
    • (2013) J. Membr. Sci. , vol.448 , pp. 209-214
    • Siracusano, S.1    Baglio, V.2    Lufrano, F.3    Staiti, P.4    Aricò, A.S.5
  • 29
    • 77955518814 scopus 로고    scopus 로고
    • SPE water electrolysis with SPEEK/PES blend membrane
    • G. Wei, L. Xu, C. Huang, and Y. Wang SPE water electrolysis with SPEEK/PES blend membrane Int. J. Hydrogen Energy 35 2010 7778 7783
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 7778-7783
    • Wei, G.1    Xu, L.2    Huang, C.3    Wang, Y.4
  • 30
    • 84912551918 scopus 로고    scopus 로고
    • Failure of PEM water electrolysis cells: Rfase study involving anode dissolution and membrane thinning
    • S.A. Grigoriev, K.A. Dzhus, D.G. Bessarabov, and P. Millet Failure of PEM water electrolysis cells: case study involving anode dissolution and membrane thinning Int. J. Hydrogen Energy 39 35 2014 20440 20446
    • (2014) Int. J. Hydrogen Energy , vol.39 , Issue.35 , pp. 20440-20446
    • Grigoriev, S.A.1    Dzhus, K.A.2    Bessarabov, D.G.3    Millet, P.4
  • 31
    • 39549100985 scopus 로고    scopus 로고
    • Solid polymer electrolyte water electrolysis systems for hydrogen production based on our newly developed membranes, part I: Rfnalysis of voltage-current characteristics
    • S. Sawada, T. Yamaki, T. Maeno, M. Asano, A. Suzuki, T. Terai, and Y. Maekawa Solid polymer electrolyte water electrolysis systems for hydrogen production based on our newly developed membranes, part I: analysis of voltage-current characteristics Prog. Nucl. Energy 50 2008 443 448
    • (2008) Prog. Nucl. Energy , vol.50 , pp. 443-448
    • Sawada, S.1    Yamaki, T.2    Maeno, T.3    Asano, M.4    Suzuki, A.5    Terai, T.6    Maekawa, Y.7
  • 32
    • 48249134093 scopus 로고    scopus 로고
    • Application of polysulfone (PSf)- and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis
    • I.-Y. Jang, O.-H. Kweon, K.-E. Kim, G.-J. Hwang, S.-B. Moon, and A.-S. Kang Application of polysulfone (PSf)- and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis J. Membr. Sci. 322 2008 154 161
    • (2008) J. Membr. Sci. , vol.322 , pp. 154-161
    • Jang, I.-Y.1    Kweon, O.-H.2    Kim, K.-E.3    Hwang, G.-J.4    Moon, S.-B.5    Kang, A.-S.6
  • 33
    • 44349107535 scopus 로고    scopus 로고
    • Fluorinated proton-conduction nafion-type membranes, the past and the future
    • S.S. Ivanchev Fluorinated proton-conduction nafion-type membranes, the past and the future Russ. J. Appl. Chem. 81 2008 569 584
    • (2008) Russ. J. Appl. Chem. , vol.81 , pp. 569-584
    • Ivanchev, S.S.1
  • 34
    • 77957701014 scopus 로고    scopus 로고
    • The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance
    • W. Xu, and K. Scott The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance Int. J. Hydrogen Energy 35 2010 12029 12037
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 12029-12037
    • Xu, W.1    Scott, K.2
  • 37
    • 22244455739 scopus 로고    scopus 로고
    • Review of proton exchange membrane fuel cell models
    • A. Biyikoglu Review of proton exchange membrane fuel cell models Int. J. Hydrogen Energy 30 2005 1181 1212
    • (2005) Int. J. Hydrogen Energy , vol.30 , pp. 1181-1212
    • Biyikoglu, A.1
  • 38
    • 48949115556 scopus 로고    scopus 로고
    • Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells
    • C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells Energy 33 2008 1331 1352
    • (2008) Energy , vol.33 , pp. 1331-1352
    • Siegel, C.1
  • 39
    • 23944490621 scopus 로고    scopus 로고
    • Review and comparison of approaches to proton exchange membrane fuel cell modeling
    • D. Cheddie, and N. Munroe Review and comparison of approaches to proton exchange membrane fuel cell modeling J. Power Sources 147 2005 72 84
    • (2005) J. Power Sources , vol.147 , pp. 72-84
    • Cheddie, D.1    Munroe, N.2
  • 40
    • 62149117524 scopus 로고    scopus 로고
    • Heat and mass transport in proton exchange membrane fuel cells - A review
    • S.K. Das, and A.S. Bansode Heat and mass transport in proton exchange membrane fuel cells - a review Heat. Transf. Eng. 30 2009 691 719
    • (2009) Heat. Transf. Eng. , vol.30 , pp. 691-719
    • Das, S.K.1    Bansode, A.S.2
  • 42
    • 7544231743 scopus 로고    scopus 로고
    • Fundamental models for fuel cell engineering
    • C.Y. Wang Fundamental models for fuel cell engineering Chem. Rev. 104 2004 4727 4766
    • (2004) Chem. Rev. , vol.104 , pp. 4727-4766
    • Wang, C.Y.1
  • 43
    • 84930349576 scopus 로고    scopus 로고
    • Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production
    • P. Ahmadi, I. Dincer, and M.A. Rosen Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production Int. J. Hydrogen Energy 40 2015 7601 7608
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 7601-7608
    • Ahmadi, P.1    Dincer, I.2    Rosen, M.A.3
  • 44
    • 84872616386 scopus 로고    scopus 로고
    • Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis
    • P. Ahmadi, I. Dincer, and M.A. Rosen Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis Int. J. Hydrogen Energy 38 2013 1795 1805
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 1795-1805
    • Ahmadi, P.1    Dincer, I.2    Rosen, M.A.3
  • 45
    • 84941423382 scopus 로고    scopus 로고
    • Kinetics analysis of the electrocatalytic oxidation of methanol inside a DMFC working as a PEM electrolysis cell (PEMEC) to generate clean hydrogen
    • C. Lamy, B. Guenot, M. Cretin, and G. Pourcelly Kinetics analysis of the electrocatalytic oxidation of methanol inside a DMFC working as a PEM electrolysis cell (PEMEC) to generate clean hydrogen Electrochim. Acta 177 2015 352 358
    • (2015) Electrochim. Acta , vol.177 , pp. 352-358
    • Lamy, C.1    Guenot, B.2    Cretin, M.3    Pourcelly, G.4
  • 46
    • 84856570873 scopus 로고    scopus 로고
    • Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Rfeview
    • A. Goñi-Urtiaga, D. Presvytes, and K. Scott Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review Int. J. Hydrogen Energy 37 2012 3358 3372
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 3358-3372
    • Goñi-Urtiaga, A.1    Presvytes, D.2    Scott, K.3
  • 47
    • 84855702428 scopus 로고    scopus 로고
    • Simple PEM water electrolyser model and experimental validation
    • R. García-Valverde, N. Espinosa, and A. Urbina Simple PEM water electrolyser model and experimental validation Int. J. Hydrogen Energy 37 2012 1927 1938
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 1927-1938
    • García-Valverde, R.1    Espinosa, N.2    Urbina, A.3
  • 48
    • 10044239503 scopus 로고    scopus 로고
    • A simple model for solid polymer electrolyte (SPE) water electrolysis
    • P. Choi A simple model for solid polymer electrolyte (SPE) water electrolysis Solid State Ionics 175 2004 535 539
    • (2004) Solid State Ionics , vol.175 , pp. 535-539
    • Choi, P.1
  • 49
    • 84940186921 scopus 로고    scopus 로고
    • A study of the loss characteristic of a high pressure electrolyzer system for hydrogen production
    • A.S. Tijani, A.H. Abdol Rahim, and M.K.B. Hisam A study of the loss characteristic of a high pressure electrolyzer system for hydrogen production J. Teknol. 75 2015 65 69
    • (2015) J. Teknol. , vol.75 , pp. 65-69
    • Tijani, A.S.1    Abdol Rahim, A.H.2    Hisam, M.K.B.3
  • 50
    • 84940186921 scopus 로고    scopus 로고
    • A study of the loss characteristic of a high pressure electrolyzer system for hydrogen production
    • Alhassan Salami Tijani, A.H. Abdol Rahim, and M.K.B. Hisam A study of the loss characteristic of a high pressure electrolyzer system for hydrogen production J. Teknol. 75 2015 65 69
    • (2015) J. Teknol. , vol.75 , pp. 65-69
    • Tijani, A.S.1    Abdol Rahim, A.H.2    Hisam, M.K.B.3
  • 52
    • 56049085808 scopus 로고    scopus 로고
    • Semiempirical model based on thermodynamic principles for determining 6kW proton exchange membrane electrolyzer stack characteristics
    • N.V. Dale, M.D. Mann, and H. Salehfar Semiempirical model based on thermodynamic principles for determining 6kW proton exchange membrane electrolyzer stack characteristics J. Power Sources 185 2008 1348 1353
    • (2008) J. Power Sources , vol.185 , pp. 1348-1353
    • Dale, N.V.1    Mann, M.D.2    Salehfar, H.3
  • 53
    • 62249188864 scopus 로고    scopus 로고
    • Fitting regression model and experimental validation for a high-pressure PEM electrolyzer
    • M. Santarelli, P. Medina, and M. Calì Fitting regression model and experimental validation for a high-pressure PEM electrolyzer Int. J. Hydrogen Energy 34 2009 2519 2530
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 2519-2530
    • Santarelli, M.1    Medina, P.2    Calì, M.3
  • 54
    • 0036687383 scopus 로고    scopus 로고
    • Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell
    • K. Onda, T. Murakami, T. Hikosaka, M. Kobayashi, R. Notu, and K. Ito Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell J. Electrochem. Soc. 149 2002 A1069
    • (2002) J. Electrochem. Soc. , vol.149
    • Onda, K.1    Murakami, T.2    Hikosaka, T.3    Kobayashi, M.4    Notu, R.5    Ito, K.6
  • 55
    • 29144489482 scopus 로고    scopus 로고
    • Dynamic modelling of a proton exchange membrane (PEM) electrolyzer
    • H. Gorgun Dynamic modelling of a proton exchange membrane (PEM) electrolyzer Int. J. Hydrogen Energy 31 2006 29 38
    • (2006) Int. J. Hydrogen Energy , vol.31 , pp. 29-38
    • Gorgun, H.1
  • 56
    • 58649088218 scopus 로고    scopus 로고
    • Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production
    • F. Marangio, M. Santarelli, and M. Cali Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production Int. J. Hydrogen Energy 34 2009 1143 1158
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 1143-1158
    • Marangio, F.1    Santarelli, M.2    Cali, M.3
  • 58
    • 80054027980 scopus 로고    scopus 로고
    • Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production
    • A. Awasthi, K. Scott, and S. Basu Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production Int. J. Hydrogen Energy 36 2011 14779 14786
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 14779-14786
    • Awasthi, A.1    Scott, K.2    Basu, S.3
  • 59
    • 84873879126 scopus 로고    scopus 로고
    • Dynamic simulation of PEM water electrolysis and comparison with experiments
    • Jan
    • B. Lee, K. Park, and H.M. Kim Dynamic simulation of PEM water electrolysis and comparison with experiments Int. J. Electrochem. Sci. 8 Jan 2013 235 248
    • (2013) Int. J. Electrochem. Sci. , vol.8 , pp. 235-248
    • Lee, B.1    Park, K.2    Kim, H.M.3
  • 60
    • 84920841525 scopus 로고    scopus 로고
    • Membrane degradation in PEM water electrolyzer: Rfumerical modeling and experimental evidence of the influence of temperature and current density
    • M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, and F. Fouda-Onana Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density Int. J. Hydrogen Energy 40 2015 1353 1366
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 1353-1366
    • Chandesris, M.1    Médeau, V.2    Guillet, N.3    Chelghoum, S.4    Thoby, D.5    Fouda-Onana, F.6
  • 61
    • 84873205636 scopus 로고    scopus 로고
    • One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production
    • H. Kim, M. Park, and K.S. Lee One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production Int. J. Hydrogen Energy 38 2013 2596 2609
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 2596-2609
    • Kim, H.1    Park, M.2    Lee, K.S.3
  • 66
    • 0029184508 scopus 로고
    • Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II. Empirical model development
    • J.C. Amphlett, R.M. Baumert, R.F. Mann, B.A. Peppley, P.R. Roberge, and T.J. Harris Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II. Empirical model development J. Electrochem. Soc. 142 1995 9 15
    • (1995) J. Electrochem. Soc. , vol.142 , pp. 9-15
    • Amphlett, J.C.1    Baumert, R.M.2    Mann, R.F.3    Peppley, B.A.4    Roberge, P.R.5    Harris, T.J.6
  • 67
    • 0033313961 scopus 로고    scopus 로고
    • Effect of humidity on PEM fuel cell performance. Part I - experiments. Part II - numerical simulation
    • Nashville,TN, HTD
    • S. Shimpalee, S. Dutta, and W.K. Lee Effect of humidity on PEM fuel cell performance. Part I - experiments. Part II - numerical simulation Proceedings of ASME IMECE, Nashville,TN, HTD 1999 367 374
    • (1999) Proceedings of ASME IMECE , pp. 367-374
    • Shimpalee, S.1    Dutta, S.2    Lee, W.K.3
  • 68
    • 0038106380 scopus 로고    scopus 로고
    • Transport in polymer-electrolyte membranes
    • A.Z. Weber, and J. Newman Transport in polymer-electrolyte membranes J. Electrochem. Soc. 150 2003 A1008
    • (2003) J. Electrochem. Soc. , vol.150
    • Weber, A.Z.1    Newman, J.2
  • 69
    • 58949086632 scopus 로고    scopus 로고
    • κ-deformed kinetics underlying water uptake in Nafion®115 membrane
    • M. Calì, V. Giaretto, and M. Santarelli κ-deformed kinetics underlying water uptake in Nafion®115 membrane Solid State Ionics 180 2009 76 81
    • (2009) Solid State Ionics , vol.180 , pp. 76-81
    • Calì, M.1    Giaretto, V.2    Santarelli, M.3
  • 70
    • 8344234131 scopus 로고    scopus 로고
    • Oxygen mass transfer in PEM fuel cell gas diffusion layers
    • K.T. Jeng, S.F. Lee, G.F. Tsai, and C.H. Wang Oxygen mass transfer in PEM fuel cell gas diffusion layers J. Power Sources 138 2004 41 50
    • (2004) J. Power Sources , vol.138 , pp. 41-50
    • Jeng, K.T.1    Lee, S.F.2    Tsai, G.F.3    Wang, C.H.4
  • 71
    • 79956358639 scopus 로고    scopus 로고
    • Water permeation through gas diffusion layers of proton exchange membrane fuel cells
    • A. Tamayol, and M. Bahrami Water permeation through gas diffusion layers of proton exchange membrane fuel cells J. Power Sources 196 2011 6356 6361
    • (2011) J. Power Sources , vol.196 , pp. 6356-6361
    • Tamayol, A.1    Bahrami, M.2
  • 72
    • 84879910644 scopus 로고    scopus 로고
    • Water transport characteristics of a PEM fuel cell at various operating pressures and temperatures
    • E. Misran, N.S.M. Hassan, W.R.W. Daud, E.H. Majlan, and M.I. Rosli Water transport characteristics of a PEM fuel cell at various operating pressures and temperatures Int. J. Hydrogen Energy 38 2013 9401 9408
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 9401-9408
    • Misran, E.1    Hassan, N.S.M.2    Daud, W.R.W.3    Majlan, E.H.4    Rosli, M.I.5
  • 73
    • 77951023666 scopus 로고    scopus 로고
    • Electro-osmotic drag coefficient and proton conductivity in Nafion® membrane for PEMFC
    • Z. Luo, Z. Chang, Y. Zhang, Z. Liu, and J. Li Electro-osmotic drag coefficient and proton conductivity in Nafion® membrane for PEMFC Int. J. Hydrogen Energy 35 2010 3120 3124
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 3120-3124
    • Luo, Z.1    Chang, Z.2    Zhang, Y.3    Liu, Z.4    Li, J.5
  • 75
    • 84874562738 scopus 로고    scopus 로고
    • Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells
    • K.D. Baik, B.K. Hong, and M.S. Kim Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells Renew. Energy 57 2013 234 239
    • (2013) Renew. Energy , vol.57 , pp. 234-239
    • Baik, K.D.1    Hong, B.K.2    Kim, M.S.3
  • 76
    • 84871979181 scopus 로고    scopus 로고
    • Modeling and experimental assessment of Nafion membrane properties used in SO2 depolarized water electrolysis for hydrogen production
    • A. Lokkiluoto, and M.M. Gasik Modeling and experimental assessment of Nafion membrane properties used in SO2 depolarized water electrolysis for hydrogen production Int. J. Hydrogen Energy 38 2013 10 19
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 10-19
    • Lokkiluoto, A.1    Gasik, M.M.2
  • 77
    • 56749105403 scopus 로고    scopus 로고
    • Effect of water transport on the production of hydrogen and sulfuric acid in a PEM electrolyzer
    • J.A. Staser, and J.W. Weidner Effect of water transport on the production of hydrogen and sulfuric acid in a PEM electrolyzer J. Electrochem. Soc. 156 2009 B16
    • (2009) J. Electrochem. Soc. , vol.156 , pp. B16
    • Staser, J.A.1    Weidner, J.W.2
  • 78
    • 33745002483 scopus 로고    scopus 로고
    • Investigation of water transport through membrane in a PEM fuel cell by water balance experiments
    • Q. Yan, H. Toghiani, and J. Wu Investigation of water transport through membrane in a PEM fuel cell by water balance experiments J. Power Sources 158 2006 316 325
    • (2006) J. Power Sources , vol.158 , pp. 316-325
    • Yan, Q.1    Toghiani, H.2    Wu, J.3
  • 82
    • 77955295224 scopus 로고    scopus 로고
    • Analysis of water transport in a high pressure PEM electrolyzer
    • P. Medina, and M. Santarelli Analysis of water transport in a high pressure PEM electrolyzer Int. J. Hydrogen Energy 35 2010 5173 5186
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 5173-5186
    • Medina, P.1    Santarelli, M.2
  • 83
    • 79251612228 scopus 로고    scopus 로고
    • Characterization of nitrogen gas crossover through the membrane in proton-exchange membrane fuel cells
    • K.D. Baik, and M.S. Kim Characterization of nitrogen gas crossover through the membrane in proton-exchange membrane fuel cells Int. J. Hydrogen Energy 36 2011 732 739
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 732-739
    • Baik, K.D.1    Kim, M.S.2
  • 84
    • 1142268110 scopus 로고    scopus 로고
    • Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells
    • F. Meier, and G. Eigenberger Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells Electrochim. Acta 49 2004 1731 1742
    • (2004) Electrochim. Acta , vol.49 , pp. 1731-1742
    • Meier, F.1    Eigenberger, G.2
  • 85
    • 34247588554 scopus 로고    scopus 로고
    • Numerical studies on rib & channel dimension of flow-field on PEMFC performance
    • S. Shimpalee, and J. Vanzee Numerical studies on rib & channel dimension of flow-field on PEMFC performance Int. J. Hydrogen Energy 32 2007 842 856
    • (2007) Int. J. Hydrogen Energy , vol.32 , pp. 842-856
    • Shimpalee, S.1    Vanzee, J.2
  • 86
    • 2242480305 scopus 로고    scopus 로고
    • Numerical prediction of temperature distribution in PEM fuel cells
    • S. Shimpalee, and S. Dutta Numerical prediction of temperature distribution in PEM fuel cells Numer. Heat Transf. 38 2000 111 128
    • (2000) Numer. Heat Transf. , vol.38 , pp. 111-128
    • Shimpalee, S.1    Dutta, S.2
  • 87
    • 84856233112 scopus 로고    scopus 로고
    • Hydrogen production from water electrolysis: Rfurrent status and future trends
    • Feb
    • A. Ursua, L.M. Gandia, and P. Sanchis Hydrogen production from water electrolysis: current status and future trends Proc. IEEE 100 Feb 2012 410 426
    • (2012) Proc. IEEE , vol.100 , pp. 410-426
    • Ursua, A.1    Gandia, L.M.2    Sanchis, P.3
  • 88
    • 80051586548 scopus 로고    scopus 로고
    • Properties of Nafion membranes under PEM water electrolysis conditions
    • H. Ito, T. Maeda, A. Nakano, and H. Takenaka Properties of Nafion membranes under PEM water electrolysis conditions Int. J. Hydrogen Energy 36 2011 10527 10540
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 10527-10540
    • Ito, H.1    Maeda, T.2    Nakano, A.3    Takenaka, H.4
  • 90
    • 2942654832 scopus 로고    scopus 로고
    • Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells
    • R.F. Silva, M. De Francesco, and A. Pozio Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells J. Power Sources 134 2004 18 26
    • (2004) J. Power Sources , vol.134 , pp. 18-26
    • Silva, R.F.1    De Francesco, M.2    Pozio, A.3
  • 91
    • 79952446350 scopus 로고    scopus 로고
    • Scientific and engineering issues related to PEM technology: Rfater electrolysers, fuel cells and unitized regenerative systems
    • P. Millet, R. Ngameni, S.A. Grigoriev, and V.N. Fateev Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems Int. J. Hydrogen Energy 36 2011 4156 4163
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 4156-4163
    • Millet, P.1    Ngameni, R.2    Grigoriev, S.A.3    Fateev, V.N.4
  • 92
    • 0038070314 scopus 로고    scopus 로고
    • Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation
    • L. Zhang, C. Ma, and S. Mukerjee Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation Electrochim. Acta 48 2003 1845 1859
    • (2003) Electrochim. Acta , vol.48 , pp. 1845-1859
    • Zhang, L.1    Ma, C.2    Mukerjee, S.3
  • 93
    • 37549045260 scopus 로고    scopus 로고
    • Durability of perfluorosulfonic acid and hydrocarbon membranes: Rfffect of humidity and temperature
    • V. Sethuraman, J. Weidner, A. Haug, and L. Protsailo Durability of perfluorosulfonic acid and hydrocarbon membranes: effect of humidity and temperature J. Electrochem. Soc. 155 2008 119 124
    • (2008) J. Electrochem. Soc. , vol.155 , pp. 119-124
    • Sethuraman, V.1    Weidner, J.2    Haug, A.3    Protsailo, L.4
  • 94
    • 84890427099 scopus 로고    scopus 로고
    • In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis
    • B. Bensmann, R. Hanke-Rauschenbach, and K. Sundmacher In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis Int. J. Hydrogen Energy 39 2014 49 53
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 49-53
    • Bensmann, B.1    Hanke-Rauschenbach, R.2    Sundmacher, K.3
  • 95
    • 0842283386 scopus 로고    scopus 로고
    • Safety-related studies on hydrogen production in high-pressure electrolysers
    • Jul
    • H. Janssen, J.C. Bringmann, B. Emonts, and V. Schroeder Safety-related studies on hydrogen production in high-pressure electrolysers Int. J. Hydrogen Energy 29 Jul 2004 759 770
    • (2004) Int. J. Hydrogen Energy , vol.29 , pp. 759-770
    • Janssen, H.1    Bringmann, J.C.2    Emonts, B.3    Schroeder, V.4
  • 97
    • 0026204251 scopus 로고
    • Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte
    • D.M. Bernardi, and M.W. Verbrugge Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte AIChE 37 1991 1151 1163
    • (1991) AIChE , vol.37 , pp. 1151-1163
    • Bernardi, D.M.1    Verbrugge, M.W.2
  • 98
    • 84869749992 scopus 로고    scopus 로고
    • Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea
    • B. Gim, and W.L. Yoon Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea Int. J. Hydrogen Energy 37 2012 19138 19145
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 19138-19145
    • Gim, B.1    Yoon, W.L.2
  • 99
    • 77950460386 scopus 로고    scopus 로고
    • Updated hydrogen production costs and parities for conventional and renewable technologies
    • R.G. Lemus, and J.M. Martínez Duart Updated hydrogen production costs and parities for conventional and renewable technologies Int. J. Hydrogen Energy 35 2010 3929 3936
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 3929-3936
    • Lemus, R.G.1    Martínez Duart, J.M.2
  • 100
    • 84890426287 scopus 로고    scopus 로고
    • Comparative assessment of hydrogen production methods from renewable and non-renewable sources
    • C. Acar, and I. Dincer Comparative assessment of hydrogen production methods from renewable and non-renewable sources Int. J. Hydrogen Energy 39 2014 1 12
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 1-12
    • Acar, C.1    Dincer, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.