메뉴 건너뛰기




Volumn 40, Issue 2, 2016, Pages 98-113

The Impact of Non-Normality on Extraction of Spurious Latent Classes in Mixture IRT Models

Author keywords

latent non normality; MCMC estimation; mixture IRT model; over extraction; spurious latent class

Indexed keywords

EXTRACTION; POPULATION MODEL; RASCH ANALYSIS; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 84957837370     PISSN: 01466216     EISSN: 15523497     Source Type: Journal    
DOI: 10.1177/0146621615605080     Document Type: Article
Times cited : (16)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H.Akaike (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0040143616 scopus 로고
    • Estimating the parameters of a latent population distribution
    • E.B.AndersenM.Madsen (1977). Estimating the parameters of a latent population distribution. Psychometrika, 42, 357-374.
    • (1977) Psychometrika , vol.42 , pp. 357-374
    • Andersen, E.B.1    Madsen, M.2
  • 4
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for over-extraction of latent trajectory classes
    • D.J.BauerP.J.Curran (2003). Distributional assumptions of growth mixture models: Implications for over-extraction of latent trajectory classes. Psychological Methods, 8, 338-363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 5
    • 0000433590 scopus 로고
    • Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm
    • R.D.BockM.Aitkin (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.
    • (1981) Psychometrika , vol.46 , pp. 443-459
    • Bock, R.D.1    Aitkin, M.2
  • 6
    • 0036905692 scopus 로고    scopus 로고
    • Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints
    • D.M.BoltA.S.CohenJ.A.Wollack (2002). Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39, 331-348.
    • (2002) Journal of Educational Measurement , vol.39 , pp. 331-348
    • Bolt, D.M.1    Cohen, A.S.2    Wollack, J.A.3
  • 9
    • 34250283902 scopus 로고
    • A method for simulating non-normal distributions
    • A.I.Fleishman (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532.
    • (1978) Psychometrika , vol.43 , pp. 521-532
    • Fleishman, A.I.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A.GelmanD.B.Rubin (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 3142515941 scopus 로고
    • Analysis of ordinal data to detect population differences
    • T.G.GregoireB.L.Driver (1987). Analysis of ordinal data to detect population differences. Psychological Bulletin, 101, 159-165.
    • (1987) Psychological Bulletin , vol.101 , pp. 159-165
    • Gregoire, T.G.1    Driver, B.L.2
  • 13
    • 34250176929 scopus 로고    scopus 로고
    • IRT model selection methods for dichotomous items
    • T.KangA.S.Cohen (2007). IRT model selection methods for dichotomous items. Applied Psychological Measurement, 31, 331-358.
    • (2007) Applied Psychological Measurement , vol.31 , pp. 331-358
    • Kang, T.1    Cohen, A.S.2
  • 17
    • 58149368765 scopus 로고
    • The unicorn, the normal curve, and other improbable creatures
    • T.Micceri (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156-166.
    • (1989) Psychological Bulletin , vol.105 , pp. 156-166
    • Micceri, T.1
  • 18
    • 0001019640 scopus 로고
    • Modeling item responses when different subjects employ different solution strategies
    • R.J.MislevyN.Verhelst (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195-215.
    • (1990) Psychometrika , vol.55 , pp. 195-215
    • Mislevy, R.J.1    Verhelst, N.2
  • 19
    • 42049117441 scopus 로고    scopus 로고
    • Latent variable hybrids: Overview of old and new models
    • Charlotte, NC: Information Age,,. In (Eds.),, (pp
    • B.Muthén (2008). Latent variable hybrids: Overview of old and new models. In (Eds.), Advances in latent variable mixture models (pp. 1-24). Charlotte, NC: Information Age.
    • (2008) Advances in latent variable mixture models , pp. 1-24
    • Muthén, B.1
  • 20
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • K.L.NylundT.AsparouhovB.O.Muthén (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 21
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov chain Monte Carlo methods for item response models
    • R.J.PatzB.W.Junker (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 146-178
    • Patz, R.J.1    Junker, B.W.2
  • 22
    • 0016772924 scopus 로고
    • Relation between the shape of population distribution and the robustness of four simple test statistics
    • E.S.PearsonN.W.Please (1975). Relation between the shape of population distribution and the robustness of four simple test statistics. Biometrika, 62, 223-241.
    • (1975) Biometrika , vol.62 , pp. 223-241
    • Pearson, E.S.1    Please, N.W.2
  • 25
    • 0000059349 scopus 로고
    • Unifactor latent trait models applied to multifactor tests: Results and implications
    • M.D.Reckase (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4, 207-230.
    • (1979) Journal of Educational Statistics , vol.4 , pp. 207-230
    • Reckase, M.D.1
  • 27
    • 84970751365 scopus 로고
    • Rasch models in latent classes: An integration of two approaches to item analysis
    • J.Rost (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271-282.
    • (1990) Applied Psychological Measurement , vol.14 , pp. 271-282
    • Rost, J.1
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G.Schwarz (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in a growth mixture model
    • Greenwich, CT: Information Age,,. In (Eds.),, (pp
    • D.TofighiC.K.Enders (2007). Identifying the correct number of classes in a growth mixture model. In (Eds.), Mixture models in latent variable research (pp. 317-341). Greenwich, CT: Information Age.
    • (2007) Mixture models in latent variable research , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 35
    • 33748787706 scopus 로고    scopus 로고
    • Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables
    • C.M.Woods (2006a). Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables. Psychological Methods, 11, 253-270.
    • (2006) Psychological Methods , vol.11 , pp. 253-270
    • Woods, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.