메뉴 건너뛰기




Volumn 28, Issue 17, 2016, Pages 4429-4442

Dynamic resource demand prediction and allocation in multi-tenant service clouds

Author keywords

dynamic resource allocation; prediction; service tenants; time series; VM placement

Indexed keywords

CLOUD COMPUTING; COPYRIGHTS; HEURISTIC METHODS; NETWORK SECURITY; RESOURCE ALLOCATION; TIME SERIES; VIRTUAL MACHINE;

EID: 84957818536     PISSN: 15320626     EISSN: 15320634     Source Type: Journal    
DOI: 10.1002/cpe.3767     Document Type: Article
Times cited : (57)

References (33)
  • 2
    • 51049123377 scopus 로고    scopus 로고
    • Defining composite configurable SaaS application packages using SCA, variability descriptors and multi-tenancy patterns
    • Mietzner R, Leymann F, Papazoglou MP. Defining composite configurable SaaS application packages using SCA, variability descriptors and multi-tenancy patterns. In: Proceeding of the 3rd International Conference on Internet and Web Applications and Services, 2008.
    • In, Proceeding of the 3rd International, Conference, on Int
    • Mietzner, R.1    Leymann, F.2    Papazoglou, M.P.3
  • 4
    • 84857370722 scopus 로고    scopus 로고
    • Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing
    • Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. FGCS 2012; 28(5):755–768.
    • (2012) FGCS , vol.28 , Issue.5 , pp. 755-768
    • Beloglazov, A.1    Abawajy, J.2    Buyya, R.3
  • 8
    • 80052804663 scopus 로고    scopus 로고
    • Empirical prediction models for adaptive resource provisioning in the Cloud
    • Elsevier
    • Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource provisioning in the Cloud. FGCS Elsevier, 2012; 28(1):155–162.
    • (2012) FGCS , vol.28 , Issue.1 , pp. 155-162
    • Islam, S.1    Keung, J.2    Lee, K.3    Liu, A.4
  • 11
    • 79955523308 scopus 로고    scopus 로고
    • Exploiting dynamic resource allocation for efficient parallel data processing in the cloud
    • Warneke D, Kao O. Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. IEEE Transactions on Parallel and Distributed Systems 2011; 22(6):985–997.
    • (2011) IEEE Transactions on Parallel and Distributed Systems , vol.22 , Issue.6 , pp. 985-997
    • Warneke, D.1    Kao, O.2
  • 17
    • 84870954380 scopus 로고    scopus 로고
    • Resource provisioning with budget constraints for adaptive applications in cloud environments
    • Zhu Q, Agrawal G. Resource provisioning with budget constraints for adaptive applications in cloud environments. IEEE Transactions on Services Computing 2012; 5(4):497–511.
    • (2012) IEEE Transactions on Services Computing , vol.5 , Issue.4 , pp. 497-511
    • Zhu, Q.1    Agrawal, G.2
  • 18
    • 84867842272 scopus 로고    scopus 로고
    • A tenant-based resource allocation model for scaling Software-as-a-Service applications over Cloud computing infrastructures
    • Espadas J, Molina A, Jimnez G, Molina M, Ramrez R, Concha D. A tenant-based resource allocation model for scaling Software-as-a-Service applications over Cloud computing infrastructures. Future Generation Computer Systems 2013; 29(1):273–286.
    • (2013) Future Generation Computer Systems , vol.29 , Issue.1 , pp. 273-286
    • Espadas, J.1    Molina, A.2    Jimnez, G.3    Molina, M.4    Ramrez, R.5    Concha, D.6
  • 20
    • 84877736288 scopus 로고    scopus 로고
    • Dynamic resource allocation using virtual machines for cloud computing environment
    • Xiao Z, Song W, Chen Q. Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transactions on Parallel and Distributed Systems 2013; 24(6):1107–1117.
    • (2013) IEEE Transactions on Parallel and Distributed Systems , vol.24 , Issue.6 , pp. 1107-1117
    • Xiao, Z.1    Song, W.2    Chen, Q.3
  • 23
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. Probabilistic neural networks. Neural Networks 1990; 3:109–118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 24
    • 84893435618 scopus 로고    scopus 로고
    • 2nd edn, Create Space Independent Publishing Platform, Galit Shmueli & Statistics.com LLC
    • Shmueli G. Practical Time Series Forecasting: A Hands on Guide (2nd edn). Create Space Independent Publishing Platform, Galit Shmueli & Statistics.com LLC, 2011.
    • (2011) Practical Time Series Forecasting: A Hands on Guide
    • Shmueli, G.1
  • 26
    • 0041636797 scopus 로고
    • A simple proof of the inequality FFD (L) <11/9 OPT (L) + 1, for all for the FFD bin-packing algorithm
    • Yue M. A simple proof of the inequality FFD (L) <11/9 OPT (L) + 1, for all for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 1991; 7(4):321–331.
    • (1991) Acta Mathematicae Applicatae Sinica , vol.7 , Issue.4 , pp. 321-331
    • Yue, M.1
  • 27
    • 78650777991 scopus 로고    scopus 로고
    • CloudSim: a tool kit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms
    • Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a tool kit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice & Experience 2011; 41(1):23–50.
    • (2011) Software: Practice & Experience , vol.41 , Issue.1 , pp. 23-50
    • Calheiros, R.N.1    Ranjan, R.2    Beloglazov, A.3    De Rose, C.A.F.4    Buyya, R.5
  • 33
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. Support vector networks. Machine Learning 1995; 20(3):273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.