메뉴 건너뛰기




Volumn 331, Issue 22, 2012, Pages 4956-4970

A new blind fault component separation algorithm for a single-channel mechanical signal mixture

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; EQUALIZERS; HIGHER ORDER STATISTICS; MACHINE COMPONENTS; MIXTURES; OPTIMIZATION;

EID: 84957642680     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2012.05.035     Document Type: Article
Times cited : (23)

References (33)
  • 1
    • 79251535298 scopus 로고    scopus 로고
    • Machine fault signature analysis by midpoint-based empirical mode decomposition
    • Q. He, Y. Liu, and F. Kong Machine fault signature analysis by midpoint-based empirical mode decomposition Measurement Science and Technology 22 2011 015702
    • (2011) Measurement Science and Technology , vol.22 , pp. 015702
    • He, Q.1    Liu, Y.2    Kong, F.3
  • 2
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection induction motor using wavelet and support vector machine (SVMs)
    • P. Konar, and P. Chattopadhyay Bearing fault detection induction motor using wavelet and support vector machine (SVMs) Applied Soft Computing 11 2011 4203 4211
    • (2011) Applied Soft Computing , vol.11 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 3
    • 78751629036 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using continuous wavelet transform
    • P.K. Kankar, S.C. Sharma, and S.P. Harsha Fault diagnosis of ball bearings using continuous wavelet transform Applied Soft Computing 11 2011 2300 2312
    • (2011) Applied Soft Computing , vol.11 , pp. 2300-2312
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 4
    • 79952763609 scopus 로고    scopus 로고
    • Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings
    • R.J. Hao, Z.K. Peng, Z.P. Feng, and F.L. Chu Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings Measurement Science and Technology 22 2011 045708
    • (2011) Measurement Science and Technology , vol.22 , pp. 045708
    • Hao, R.J.1    Peng, Z.K.2    Feng, Z.P.3    Chu, F.L.4
  • 5
    • 72149130282 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
    • Y.G. Lei, and M.J. Zuo Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs Measurement Science and Technology 20 2009 125701
    • (2009) Measurement Science and Technology , vol.20 , pp. 125701
    • Lei, Y.G.1    Zuo, M.J.2
  • 6
    • 84921635501 scopus 로고    scopus 로고
    • Phase space feature based on independent component analysis for machine health diagnosis
    • Q. He, R. Du, and F. Kong Phase space feature based on independent component analysis for machine health diagnosis Journal of Vibration and Acoustics 133 2011 011106
    • (2011) Journal of Vibration and Acoustics , vol.133 , pp. 011106
    • He, Q.1    Du, R.2    Kong, F.3
  • 7
    • 27644532937 scopus 로고    scopus 로고
    • Blind source separation of internal combustion engine piston slap from other measured vibration signals
    • X. Liu, and R.B. Randall Blind source separation of internal combustion engine piston slap from other measured vibration signals Mechanical Systems and Signal Processing 19 2005 1196 1208
    • (2005) Mechanical Systems and Signal Processing , vol.19 , pp. 1196-1208
    • Liu, X.1    Randall, R.B.2
  • 8
    • 27644548250 scopus 로고    scopus 로고
    • A blind deconvolution separation of multiple sources, with application to bearing diagnostics
    • R. Peled, S. Braun, and M. Zacksenhouse A blind deconvolution separation of multiple sources, with application to bearing diagnostics Mechanical Systems and Signal Processing 19 2005 1181 1195
    • (2005) Mechanical Systems and Signal Processing , vol.19 , pp. 1181-1195
    • Peled, R.1    Braun, S.2    Zacksenhouse, M.3
  • 9
    • 24144440092 scopus 로고    scopus 로고
    • Feature separation using ICA for a one-dimensional time series and its application in fault detection
    • M.J. Zuo, J. Lin, and X.F. Fan Feature separation using ICA for a one-dimensional time series and its application in fault detection Journal of Sound and Vibration 287 2005 614 624
    • (2005) Journal of Sound and Vibration , vol.287 , pp. 614-624
    • Zuo, M.J.1    Lin, J.2    Fan, X.F.3
  • 10
    • 18444368434 scopus 로고    scopus 로고
    • Fault feature separation using wavelet-ICA filter
    • J. Lin, and A.M. Zhang Fault feature separation using wavelet-ICA filter NDT&E International 38 2005 421 427
    • (2005) NDT&E International , vol.38 , pp. 421-427
    • Lin, J.1    Zhang, A.M.2
  • 11
    • 39749161545 scopus 로고    scopus 로고
    • A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings
    • X.F. Fan, M. Liang, T.H. Yeap, and B. Kind A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings Smart Materials and Structures 16 2007 1973 1987
    • (2007) Smart Materials and Structures , vol.16 , pp. 1973-1987
    • Fan, X.F.1    Liang, M.2    Yeap, T.H.3    Kind, B.4
  • 12
    • 80053621166 scopus 로고    scopus 로고
    • Rolling element bearing fault feature extraction using EMD based independent component analysis
    • Denver, CO, 21-23 June
    • Q. Miao, D. Wang, M. Pecht, Rolling element bearing fault feature extraction using EMD based independent component analysis, IEEE: International Prognostics and Health Management Conference, Denver, CO, 21-23 June 2011.
    • (2011) IEEE: International Prognostics and Health Management Conference
    • Miao, Q.1    Wang, D.2    Pecht, M.3
  • 13
    • 50549098177 scopus 로고    scopus 로고
    • Separating mixed multi-component signal with an application in mechanical watch movements
    • Q. He, S. Su, and R. Du Separating mixed multi-component signal with an application in mechanical watch movements Digital Signal Processing 18 2008 1013 1028
    • (2008) Digital Signal Processing , vol.18 , pp. 1013-1028
    • He, Q.1    Su, S.2    Du, R.3
  • 14
    • 27644480038 scopus 로고    scopus 로고
    • Blind separation of vibration components: Principles and demonstrations
    • J. Antoni Blind separation of vibration components: principles and demonstrations Mechanical Systems and Signal Processing 19 2005 1166 1180
    • (2005) Mechanical Systems and Signal Processing , vol.19 , pp. 1166-1180
    • Antoni, J.1
  • 15
    • 27744587461 scopus 로고    scopus 로고
    • The spectral kurtosis: A useful tool for characterizing non-stationary signals
    • J. Antoni The spectral kurtosis: a useful tool for characterizing non-stationary signals Mechanical Systems and Signal Processing 20 2006 282 307
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 282-307
    • Antoni, J.1
  • 18
    • 34047260285 scopus 로고    scopus 로고
    • Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition
    • H. Hong, and M. Liang Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition Mechanical Systems and Signal Processing 21 2007 2025 2040
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2025-2040
    • Hong, H.1    Liang, M.2
  • 19
    • 84871601566 scopus 로고    scopus 로고
    • Blind deconvolution using the eigenvector algorithm (EVA) method for the enhancement of bearing signal through the transmission channel
    • A.C.C. Tan, M. Karimi, and J. Mathew Blind deconvolution using the eigenvector algorithm (EVA) method for the enhancement of bearing signal through the transmission channel Engineering Asset Management 2006 198 205
    • (2006) Engineering Asset Management , pp. 198-205
    • Tan, A.C.C.1    Karimi, M.2    Mathew, J.3
  • 20
    • 33645696041 scopus 로고    scopus 로고
    • Blind source separation and blind equalization algorithms for mechanical signal separation and identification
    • P.W. Tse, J.Y. Zhang, and X.J. Wang Blind source separation and blind equalization algorithms for mechanical signal separation and identification Journal of Vibration and Control 12 2006 395 423
    • (2006) Journal of Vibration and Control , vol.12 , pp. 395-423
    • Tse, P.W.1    Zhang, J.Y.2    Wang, X.J.3
  • 21
    • 34548034215 scopus 로고    scopus 로고
    • Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis
    • P.W. Tse, S. Gontarz, and X.J. Wang Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis Mechanical Systems and Signal Processing 21 2007 2794 2813
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2794-2813
    • Tse, P.W.1    Gontarz, S.2    Wang, X.J.3
  • 22
    • 38349120415 scopus 로고    scopus 로고
    • Recovery of vibration signal based on a super-exponential algorithm
    • Y.J. Li, P.W. Tse, and X.J. Wang Recovery of vibration signal based on a super-exponential algorithm Journal of Sound and Vibration 311 2008 537 553
    • (2008) Journal of Sound and Vibration , vol.311 , pp. 537-553
    • Li, Y.J.1    Tse, P.W.2    Wang, X.J.3
  • 23
    • 84957685191 scopus 로고    scopus 로고
    • (Last visit, October 1, 2011)
    • Autoregressive model, Wikipedia, 〈http://en.wikipedia.org/wiki/Autoregressive-model〉 (Last visit, October 1, 2011)
    • Autoregressive Model, Wikipedia
  • 24
    • 33750517287 scopus 로고    scopus 로고
    • Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter
    • H. Endo, and R.B. Randall Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter Mechanical Systems and Signal Processing 21 2007 906 919
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 906-919
    • Endo, H.1    Randall, R.B.2
  • 25
    • 0025404985 scopus 로고
    • New criteria for blind deconvolution of nonminimum phase systems (channels)
    • O. Shalvi, and G. Weinstein New criteria for blind deconvolution of nonminimum phase systems (channels) IEEE Transactions on Information Theory 36 1990 312 321
    • (1990) IEEE Transactions on Information Theory , vol.36 , pp. 312-321
    • Shalvi, O.1    Weinstein, G.2
  • 26
    • 0028414048 scopus 로고
    • A closed form solution to blind equalization
    • B. Jelonnek, and K.D. Kammeyer A closed form solution to blind equalization Signal Processing 36 1994 251 259
    • (1994) Signal Processing , vol.36 , pp. 251-259
    • Jelonnek, B.1    Kammeyer, K.D.2
  • 27
    • 0031220109 scopus 로고    scopus 로고
    • Generalized eigenvector algorithm for blind equalization
    • B. Jelonnek, Dieter Boss, and K.D. Kammeyer Generalized eigenvector algorithm for blind equalization Signal Processing 61 1997 237 264
    • (1997) Signal Processing , vol.61 , pp. 237-264
    • Jelonnek, B.1    Boss, D.2    Kammeyer, K.D.3
  • 29
    • 0000113722 scopus 로고    scopus 로고
    • Extraction of impacting signals using blind deconvolution
    • J.Y. Lee, and A.K. Nandi Extraction of impacting signals using blind deconvolution Journal of Sound and Vibration 232 2000 945 962
    • (2000) Journal of Sound and Vibration , vol.232 , pp. 945-962
    • Lee, J.Y.1    Nandi, A.K.2
  • 30
    • 34548616369 scopus 로고    scopus 로고
    • A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection
    • I.S. Bozchalooi, and M. Liang A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection Journal of Sound and Vibration 308 2007 246 267
    • (2007) Journal of Sound and Vibration , vol.308 , pp. 246-267
    • Bozchalooi, I.S.1    Liang, M.2
  • 32
    • 3142575287 scopus 로고    scopus 로고
    • A complex filter for vibration signal demodulation in bearing defect diagnosis
    • Y.T. Sheen A complex filter for vibration signal demodulation in bearing defect diagnosis Journal of Sound and Vibration 276 2004 105 119
    • (2004) Journal of Sound and Vibration , vol.276 , pp. 105-119
    • Sheen, Y.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.