-
1
-
-
0001906678
-
Zeros, multiplicities and idempotents for zero dimensional systems
-
volume 143 of Prog. in Math., L. González-Vega and T. Recio, editors, Birkhauser, Basel
-
M.E. Alonso, E. Becker, M.F. Roy, and T. Wörmann. Zeros, multiplicities and idempotents for zero dimensional systems. In L. González-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Applications, volume 143 of Prog. in Math., pages 1-15. Birkhauser, Basel, 1996.
-
(1996)
Algorithms in Algebraic Geometry and Applications
, pp. 1-15
-
-
Alonso, M.E.1
Becker, E.2
Roy, M.F.3
Wörmann, T.4
-
2
-
-
0002783070
-
An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations
-
volume 86 of Int. Series of Numerical Math, Birkhauser Verlag
-
W. Auzinger and H.J. Stetter. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical Math., volume 86 of Int. Series of Numerical Math, pages 12-30. Birkhauser Verlag, 1988.
-
(1988)
Proc. Intern. Conf. on Numerical Math
, pp. 12-30
-
-
Auzinger, W.1
Stetter, H.J.2
-
4
-
-
0032514307
-
Controlled iterative methods for solving polynomial systems
-
ACM Press
-
D. Bondyfalat, B. Mourrain, and V.Y. Pan. Controlled iterative methods for solving polynomial systems. In Proc. ISSAC, pages 252-259. ACM Press., 1998.
-
(1998)
Proc. ISSAC
, pp. 252-259
-
-
Bondyfalat, D.1
Mourrain, B.2
Pan, V.Y.3
-
5
-
-
0004054295
-
-
PhD thesis, Math. Inst, Univ. of Innsbruck, Austria, (also in Aequationes Math. 4/3, 1970)
-
B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (German). PhD thesis, Math. Inst, Univ. of Innsbruck, Austria, 1965. (also in Aequationes Math. 4/3, 1970).
-
(1965)
An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (German)
-
-
Buchberger, B.1
-
6
-
-
0002803133
-
Grobner bases: An algebraic method in ideal theory
-
N.K. Bose, editor, Reidel Publishing Co
-
B. Buchberger. Grobner bases: An algebraic method in ideal theory. In N.K. Bose, editor, Multidimensional System Theory, pages 184-232. Reidel Publishing Co., 1985.
-
(1985)
Multidimensional System Theory
, pp. 184-232
-
-
Buchberger, B.1
-
7
-
-
0003908675
-
-
Undergraduate Texts in Mathematics. Springer, New York
-
D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York, 1992.
-
(1992)
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
-
-
Cox, D.1
Little, J.2
O'Shea, D.3
-
10
-
-
25944479355
-
Efficient computation of zerodimensional groebner bases by change of ordering
-
J.C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zerodimensional groebner bases by change of ordering. J.S.C, 16(4):329-344, 1993.
-
(1993)
J.S.C
, vol.16
, Issue.4
, pp. 329-344
-
-
Faugere, J.C.1
Gianni, P.2
Lazard, D.3
Mora, T.4
-
11
-
-
0033143274
-
A new efficient algorithm for computing Gröbner Basis (F4)
-
Faugere J.C. A new efficient algorithm for computing Gröbner Basis (F4). J. of Pure and Applied Algebra, 139:61-88, 1999.
-
(1999)
J. of Pure and Applied Algebra
, vol.139
, pp. 61-88
-
-
Faugere, J.C.1
-
12
-
-
0000332757
-
When Polynomial Equation Systems can be "Solved" Fast?
-
LNCS. Springer-Verlag
-
M. Giusti, J. Heintz, J.E. Morais, and L.M. Pardo. When Polynomial Equation Systems can be "Solved" Fast? In AAECC'95, LNCS. Springer-Verlag, 1995.
-
(1995)
AAECC'95
-
-
Giusti, M.1
Heintz, J.2
Morais, J.E.3
Pardo, L.M.4
-
13
-
-
0002548511
-
Resolution des systemes d'equations algebriques
-
D. Lazard. Resolution des systemes d'equations algebriques. Theo. Comp. Science, 15:77-110, 1981.
-
(1981)
Theo. Comp. Science
, vol.15
, pp. 77-110
-
-
Lazard, D.1
-
14
-
-
9144270675
-
On the Resolution of a given Modular System into Primary Systems Including some Properties of Hilbert Numbers
-
F.S. Macaulay. On the Resolution of a given Modular System into Primary Systems Including some Properties of Hilbert Numbers. Proc. London Math. Soc., pages 66-121, 1912.
-
(1912)
Proc. London Math. Soc
, pp. 66-121
-
-
Macaulay, F.S.1
-
15
-
-
85027646416
-
Systems of algebraic equations solved by means of endomorphisms
-
H. M. Möoller. Systems of algebraic equations solved by means of endomorphisms. Lect. Notes in Comp. Sci., 673:43-56, 1993.
-
(1993)
Lect. Notes in Comp. Sci
, vol.673
, pp. 43-56
-
-
Möoller, H.M.1
-
17
-
-
0031645387
-
Asymptotic acceleration of solving multivariate polynomial systems of equations
-
ACM Press
-
B. Mourrain and V.Y. Pan. Asymptotic acceleration of solving multivariate polynomial systems of equations. In Proc. STOC, pages 488-496. ACM Press., 1998.
-
(1998)
Proc. STOC
, pp. 488-496
-
-
Mourrain, B.1
Pan, V.Y.2
-
18
-
-
9144228865
-
Multivariate polynomials, duality and structured matrices
-
To appear
-
B. Mourrain and V.Y. Pan. Multivariate polynomials, duality and structured matrices. J. of Complexity, 1999. To appear.
-
(1999)
J. of Complexity
-
-
Mourrain, B.1
Pan, V.Y.2
-
19
-
-
0030075395
-
Groebner Bases with Respect to Generalized Term Orders and their Application to the Modelling Problem
-
F. Pauer and S. Zampieri. Groebner Bases with Respect to Generalized Term Orders and their Application to the Modelling Problem. J.S.C., 21:155-168, 1996.
-
(1996)
J.S.C
, vol.21
, pp. 155-168
-
-
Pauer, F.1
Zampieri, S.2
-
20
-
-
0001572510
-
On the computational complexity and geometry of the first order theory of reals (I, II, III)
-
J. Renegar. On the computational complexity and geometry of the first order theory of reals (I, II, III). J. Symbolic Computation, 13(3):255-352, 1992.
-
(1992)
J. Symbolic Computation
, vol.13
, Issue.3
, pp. 255-352
-
-
Renegar, J.1
-
22
-
-
84972574115
-
Grobner bases of toric varieties
-
B. Sturmfels. Grobner bases of toric varieties. Tohoku Math. J., 43:249-261, 1991.
-
(1991)
Tohoku Math. J
, vol.43
, pp. 249-261
-
-
Sturmfels, B.1
|