메뉴 건너뛰기




Volumn 76, Issue , 2016, Pages 91-102

Enzymatic biofuel cells: 30 years of critical advancements

Author keywords

Bioanodes; Biobattery; Biocathodes; Bioelectrocatalysis; Biofuel cells

Indexed keywords

BIOLOGICAL FUEL CELLS; CELLS; CYTOLOGY; ENZYMATIC FUEL CELLS;

EID: 84957561560     PISSN: 09565663     EISSN: 18734235     Source Type: Journal    
DOI: 10.1016/j.bios.2015.06.029     Document Type: Article
Times cited : (423)

References (178)
  • 1
    • 84901295482 scopus 로고    scopus 로고
    • Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions
    • Agnes C., Holzinger M., Le Goff A., Reuillard B., Elouarzaki K., Tingry S., Cosnier S. Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 2014, 7(6):1884-1888.
    • (2014) Energy Environ. Sci. , vol.7 , Issue.6 , pp. 1884-1888
    • Agnes, C.1    Holzinger, M.2    Le Goff, A.3    Reuillard, B.4    Elouarzaki, K.5    Tingry, S.6    Cosnier, S.7
  • 2
    • 15344344385 scopus 로고    scopus 로고
    • 2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenases enzymes
    • 2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenases enzymes. Electrochim. Acta 2005, 50(12):2521-2525.
    • (2005) Electrochim. Acta , vol.50 , Issue.12 , pp. 2521-2525
    • Akers, N.L.1    Moore, C.M.2    Minteer, S.D.3
  • 4
    • 77955710669 scopus 로고    scopus 로고
    • Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications
    • Arechederra M.N., Jenkins C., Rincon R.A., Artyushkova K., Atanassov P., Minteer S.D. Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications. Electrochim. Acta 2010, 55:6659-6664.
    • (2010) Electrochim. Acta , vol.55 , pp. 6659-6664
    • Arechederra, M.N.1    Jenkins, C.2    Rincon, R.A.3    Artyushkova, K.4    Atanassov, P.5    Minteer, S.D.6
  • 6
    • 60849102781 scopus 로고    scopus 로고
    • Complete oxidation of glycerol in an enzymatic biofuel cell
    • Arechederra R.L., Minteer S.D. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 2009, 9(1):63-69.
    • (2009) Fuel Cells , vol.9 , Issue.1 , pp. 63-69
    • Arechederra, R.L.1    Minteer, S.D.2
  • 8
    • 0001549184 scopus 로고    scopus 로고
    • Recent developments in Faradaic bioelectrochemistry
    • Armstrong F.A., Wilson G.S. Recent developments in Faradaic bioelectrochemistry. Electrochim. Acta 2000, 45(15-16):2623-2645.
    • (2000) Electrochim. Acta , vol.45 , Issue.15-16 , pp. 2623-2645
    • Armstrong, F.A.1    Wilson, G.S.2
  • 9
    • 0031260208 scopus 로고    scopus 로고
    • +-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes
    • +-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes. J. Am. Chem. Soc. 1997, 119(39):9114-9119.
    • (1997) J. Am. Chem. Soc. , vol.119 , Issue.39 , pp. 9114-9119
    • Bardea, A.1    Katz, E.2    Bueckmann, A.F.3    Willner, I.4
  • 10
    • 33745231335 scopus 로고    scopus 로고
    • A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer
    • Barriere F., Kavanaugh P., Leech D. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochim. Acta 2006, 51(24):5187-5192.
    • (2006) Electrochim. Acta , vol.51 , Issue.24 , pp. 5187-5192
    • Barriere, F.1    Kavanaugh, P.2    Leech, D.3
  • 11
    • 0003007494 scopus 로고
    • Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. 1. Redox mediator entrapped within the film
    • Bartlett P.N., Pratt K.F.E. Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. 1. Redox mediator entrapped within the film. J. Electroanal. Chem. 1995, 397(1-2):61-78.
    • (1995) J. Electroanal. Chem. , vol.397 , Issue.1-2 , pp. 61-78
    • Bartlett, P.N.1    Pratt, K.F.E.2
  • 16
    • 78650555646 scopus 로고    scopus 로고
    • Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications
    • Beneyton T., El H.A., Griffiths A.D., Hellwig P., Taly V. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications. Electrochem. Commun. 2011, 13:24-27.
    • (2011) Electrochem. Commun. , vol.13 , pp. 24-27
    • Beneyton, T.1    El, H.A.2    Griffiths, A.D.3    Hellwig, P.4    Taly, V.5
  • 18
    • 13644255468 scopus 로고    scopus 로고
    • Oxygen transport in composite mediated biocathodes
    • Calabrese-Barton S. Oxygen transport in composite mediated biocathodes. Electrochim. Acta 2005, 50:2145-2153.
    • (2005) Electrochim. Acta , vol.50 , pp. 2145-2153
    • Calabrese-Barton, S.1
  • 21
    • 84855968755 scopus 로고    scopus 로고
    • Enzymatic biofuel cells utilizing a biomimetic cofactor
    • Campbell E., Meredith M., Minteer S.D., Banta S. Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem. Commun. 2012, 48(13):1898-1900.
    • (2012) Chem. Commun. , vol.48 , Issue.13 , pp. 1898-1900
    • Campbell, E.1    Meredith, M.2    Minteer, S.D.3    Banta, S.4
  • 23
    • 81855166225 scopus 로고    scopus 로고
    • Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis
    • Che A.-F., Germain V., Cretin M., Cornu D., Innocent C., Tingry S. Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis. New J. Chem. 2011, 35:2848-2853.
    • (2011) New J. Chem. , vol.35 , pp. 2848-2853
    • Che, A.-F.1    Germain, V.2    Cretin, M.3    Cornu, D.4    Innocent, C.5    Tingry, S.6
  • 26
    • 78650253770 scopus 로고    scopus 로고
    • Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via aquifex aeolicus hydrogenase at graphite membrane electrodes
    • Ciaccafava A., Infossi P., Giudici-Orticoni M.-T., Lojou E. Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via aquifex aeolicus hydrogenase at graphite membrane electrodes. Langmuir 2010, 26:18534-18541.
    • (2010) Langmuir , vol.26 , pp. 18534-18541
    • Ciaccafava, A.1    Infossi, P.2    Giudici-Orticoni, M.-T.3    Lojou, E.4
  • 30
    • 84887569786 scopus 로고    scopus 로고
    • Towards glucose biofuel cells implanted in human body for powering artificial organs: review
    • Cosnier S., Le Goff A., Holzinger M. Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 2014, 38(0):19-23.
    • (2014) Electrochem. Commun. , vol.38 , pp. 19-23
    • Cosnier, S.1    Le Goff, A.2    Holzinger, M.3
  • 32
    • 0000410869 scopus 로고
    • Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers
    • Degani Y., Heller A. Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J. Am. Chem. Soc. 1989, 111(6):2357-2358.
    • (1989) J. Am. Chem. Soc. , vol.111 , Issue.6 , pp. 2357-2358
    • Degani, Y.1    Heller, A.2
  • 34
    • 81255183970 scopus 로고    scopus 로고
    • A membraneless biofuel cell powered by ethanol and alcoholic beverage
    • Deng L., Shang L., Wen D., Zhai J.-F., Dong S.-J. A membraneless biofuel cell powered by ethanol and alcoholic beverage. Biosens. Bioelectron. 2010, 26:70-73.
    • (2010) Biosens. Bioelectron. , vol.26 , pp. 70-73
    • Deng, L.1    Shang, L.2    Wen, D.3    Zhai, J.-F.4    Dong, S.-J.5
  • 35
    • 0024802705 scopus 로고
    • Ferrocene modified polypyrrole with immobilised glucose oxidase and its application in amperometric glucose microbiosensors
    • Dicks J.M., Hattori S., Karube I., Turner A.P., Yokozawa T. Ferrocene modified polypyrrole with immobilised glucose oxidase and its application in amperometric glucose microbiosensors. Ann. Biol. Clin. 1989, 47(10):607-619.
    • (1989) Ann. Biol. Clin. , vol.47 , Issue.10 , pp. 607-619
    • Dicks, J.M.1    Hattori, S.2    Karube, I.3    Turner, A.P.4    Yokozawa, T.5
  • 36
    • 77950371075 scopus 로고    scopus 로고
    • Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: towards the development of biocathode for biofuel cells
    • Ding S.-N., Holzinger M., Mousty C., Cosnier S. Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: towards the development of biocathode for biofuel cells. J. Power Sources 2010, 195:4714-4717.
    • (2010) J. Power Sources , vol.195 , pp. 4714-4717
    • Ding, S.-N.1    Holzinger, M.2    Mousty, C.3    Cosnier, S.4
  • 37
    • 78649442445 scopus 로고    scopus 로고
    • Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells
    • Durand F., Stines-Chaumeil C., Flexer V., Andre I., Mano N. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells. Biochem. Biophys. Res. Commun. 2010, 402:750-754.
    • (2010) Biochem. Biophys. Res. Commun. , vol.402 , pp. 750-754
    • Durand, F.1    Stines-Chaumeil, C.2    Flexer, V.3    Andre, I.4    Mano, N.5
  • 39
    • 84880008846 scopus 로고    scopus 로고
    • Miniature biofuel cell as a potential power source for glucose-sensing contact lenses
    • Falk M., Andoralov V., Silow M., Toscano M.D., Shleev S. Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Anal. Chem. 2013, 85(13):6342-6348.
    • (2013) Anal. Chem. , vol.85 , Issue.13 , pp. 6342-6348
    • Falk, M.1    Andoralov, V.2    Silow, M.3    Toscano, M.D.4    Shleev, S.5
  • 40
    • 39649112653 scopus 로고    scopus 로고
    • Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor
    • Gallaway J., Wheeldon I., Rincon R., Atanassov P., Banta S., Barton S.C. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens. Bioelectron. 2008, 23:1229-1235.
    • (2008) Biosens. Bioelectron. , vol.23 , pp. 1229-1235
    • Gallaway, J.1    Wheeldon, I.2    Rincon, R.3    Atanassov, P.4    Banta, S.5    Barton, S.C.6
  • 41
    • 46049112697 scopus 로고    scopus 로고
    • Kinetics of redox polymer-mediated enzyme electrodes
    • Gallaway J.W., Calabrese B.S.A. Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 2008, 130:8527-8536.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 8527-8536
    • Gallaway, J.W.1    Calabrese, B.S.A.2
  • 42
    • 69949115954 scopus 로고    scopus 로고
    • 2 membrane-less biofuel cell through glucose oxidase purification
    • 2 membrane-less biofuel cell through glucose oxidase purification. Biosens. Bioelectron. 2009, 25:356-361.
    • (2009) Biosens. Bioelectron. , vol.25 , pp. 356-361
    • Gao, F.1    Courjean, O.2    Mano, N.3
  • 45
    • 84922701945 scopus 로고    scopus 로고
    • Simplifying enzymatic biofuel cells: immobilized naphthoquinone as a biocathodic orientational moiety and bioanodic electron mediator
    • Giroud F., Milton R.D., Tan B.-X., Minteer S.D. Simplifying enzymatic biofuel cells: immobilized naphthoquinone as a biocathodic orientational moiety and bioanodic electron mediator. ACS Catal. 2015, 5(2):1240-1244.
    • (2015) ACS Catal. , vol.5 , Issue.2 , pp. 1240-1244
    • Giroud, F.1    Milton, R.D.2    Tan, B.-X.3    Minteer, S.D.4
  • 47
    • 78651380459 scopus 로고    scopus 로고
    • Peroxidase biocathodes for a biofuel cell development
    • Gomez C., Shipovskov S., Ferapontova E.E. Peroxidase biocathodes for a biofuel cell development. J. Renew. Sustain. Energy 2010, 2. http://dx.doi.org/10.1063/1.3298136 (Article id: 013103).
    • (2010) J. Renew. Sustain. Energy , vol.2
    • Gomez, C.1    Shipovskov, S.2    Ferapontova, E.E.3
  • 49
    • 84923337187 scopus 로고    scopus 로고
    • Enhanced electrochemical oxidation of NADH at carbon nanotube electrodes using methylene green: is polymerization necessary?
    • Goran J.M., Favela C.A., Rust I.M., Stevenson K.J. Enhanced electrochemical oxidation of NADH at carbon nanotube electrodes using methylene green: is polymerization necessary?. J. Electrochem. Soc. 2014, 161(13):H3042-H3048.
    • (2014) J. Electrochem. Soc. , vol.161 , Issue.13 , pp. H3042-H3048
    • Goran, J.M.1    Favela, C.A.2    Rust, I.M.3    Stevenson, K.J.4
  • 50
    • 84873333974 scopus 로고    scopus 로고
    • Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes
    • Goran J.M., Mantilla S.M., Stevenson K.J. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes. Anal. Chem. 2013, 85(3):1571-1581.
    • (2013) Anal. Chem. , vol.85 , Issue.3 , pp. 1571-1581
    • Goran, J.M.1    Mantilla, S.M.2    Stevenson, K.J.3
  • 51
    • 0021373439 scopus 로고
    • Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, Meldola blue
    • Gorton L.T., Jaegfeldt A., Johansson, G.H. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, Meldola blue. J. Electroanal. Chem. Interfacial Electrochem. 1984, 161(1):103-120.
    • (1984) J. Electroanal. Chem. Interfacial Electrochem. , vol.161 , Issue.1 , pp. 103-120
    • Gorton, L.T.1    Jaegfeldt, A.2    Johansson, G.H.3
  • 52
    • 0025366526 scopus 로고
    • Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications
    • Gregg B.A., Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal. Chem. 1990, 62(3):258-263.
    • (1990) Anal. Chem. , vol.62 , Issue.3 , pp. 258-263
    • Gregg, B.A.1    Heller, A.2
  • 53
    • 81355139022 scopus 로고    scopus 로고
    • Direct bio-electrocatalysis by multi-copper oxidases: gas-diffusion laccase-catalyzed cathodes for biofuel cells
    • Gupta G., Lau C., Branch B., Rajendran V., Ivnitski D., Atanassov P. Direct bio-electrocatalysis by multi-copper oxidases: gas-diffusion laccase-catalyzed cathodes for biofuel cells. Electrochim. Acta 2011, 56:10767-10771.
    • (2011) Electrochim. Acta , vol.56 , pp. 10767-10771
    • Gupta, G.1    Lau, C.2    Branch, B.3    Rajendran, V.4    Ivnitski, D.5    Atanassov, P.6
  • 54
    • 79951853514 scopus 로고    scopus 로고
    • Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes
    • Gupta G., Lau C., Rajendran V., Colon F., Branch B., Ivnitski D., Atanassov P. Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochem. Commun. 2011, 13(3):247-249.
    • (2011) Electrochem. Commun. , vol.13 , Issue.3 , pp. 247-249
    • Gupta, G.1    Lau, C.2    Rajendran, V.3    Colon, F.4    Branch, B.5    Ivnitski, D.6    Atanassov, P.7
  • 55
    • 77949912263 scopus 로고    scopus 로고
    • Laboratory evolution of laccase for substrate specificity
    • Gupta N., Lee F.S., Farinas E.T. Laboratory evolution of laccase for substrate specificity. J. Mol. Catal. B: Enzym. 2010, 62:230-234.
    • (2010) J. Mol. Catal. B: Enzym. , vol.62 , pp. 230-234
    • Gupta, N.1    Lee, F.S.2    Farinas, E.T.3
  • 57
    • 11944262355 scopus 로고
    • Electrical wiring of redox enzymes
    • Heller A. Electrical wiring of redox enzymes. Acc. Chem. Res. 1990, 23(5):128-134.
    • (1990) Acc. Chem. Res. , vol.23 , Issue.5 , pp. 128-134
    • Heller, A.1
  • 58
    • 82555170633 scopus 로고    scopus 로고
    • Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation
    • Holland J.T., Lau C., Brozik S., Atanassov P., Banta S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc. 2011, 133:19262-19265.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 19262-19265
    • Holland, J.T.1    Lau, C.2    Brozik, S.3    Atanassov, P.4    Banta, S.5
  • 61
    • 78049306562 scopus 로고    scopus 로고
    • Pyrene-functionalised single-walled carbon nanotubes for mediatorless dioxygen bioelectrocatalysis
    • Joensson-Niedziolka M., Kaminska A., Opallo M. Pyrene-functionalised single-walled carbon nanotubes for mediatorless dioxygen bioelectrocatalysis. Electrochim. Acta 2010, 55:8744-8750.
    • (2010) Electrochim. Acta , vol.55 , pp. 8744-8750
    • Joensson-Niedziolka, M.1    Kaminska, A.2    Opallo, M.3
  • 62
    • 34147192443 scopus 로고    scopus 로고
    • High current density bioelectrolysis of d-fructose at fructose dehydrogenase-adsorbed and Ketjen black-modified electrodes without a mediator
    • Kamitaka Y., Tsujimura S., Kano K. High current density bioelectrolysis of d-fructose at fructose dehydrogenase-adsorbed and Ketjen black-modified electrodes without a mediator. Chem. Lett. 2007, 36(2):218-219.
    • (2007) Chem. Lett. , vol.36 , Issue.2 , pp. 218-219
    • Kamitaka, Y.1    Tsujimura, S.2    Kano, K.3
  • 63
    • 85031870096 scopus 로고    scopus 로고
    • Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen
    • Kamitaka Y., Tsujimura S., Kataoka K., Sakurai T., Ikeda T., Kano K. Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. J. Electroanal. Chem. 2006, 10:1-6.
    • (2006) J. Electroanal. Chem. , vol.10 , pp. 1-6
    • Kamitaka, Y.1    Tsujimura, S.2    Kataoka, K.3    Sakurai, T.4    Ikeda, T.5    Kano, K.6
  • 64
    • 34147178293 scopus 로고    scopus 로고
    • Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis
    • Kamitaka Y., Tsujimura S., Setoyama N., Kajino T., Kano K. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys. Chem. Chem. Phys. 2007, 9(15):1793-1801.
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , Issue.15 , pp. 1793-1801
    • Kamitaka, Y.1    Tsujimura, S.2    Setoyama, N.3    Kajino, T.4    Kano, K.5
  • 65
    • 79953202878 scopus 로고    scopus 로고
    • Simulation of multistep enzyme-catalyzed methanol oxidation in biofuel cells
    • Kar P., Wen H., Li H., Minteer S.D., Calabrese B.S. Simulation of multistep enzyme-catalyzed methanol oxidation in biofuel cells. J. Electrochem. Soc. 2011, 158:B580-B586.
    • (2011) J. Electrochem. Soc. , vol.158 , pp. B580-B586
    • Kar, P.1    Wen, H.2    Li, H.3    Minteer, S.D.4    Calabrese, B.S.5
  • 66
    • 84884644060 scopus 로고    scopus 로고
    • Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells
    • Karaskiewicz M., Biernat J.F., Rogalski J., Roberts K.P., Bilewicz R. Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells. Electrochim. Acta 2013, 112(0):403-413.
    • (2013) Electrochim. Acta , vol.112 , pp. 403-413
    • Karaskiewicz, M.1    Biernat, J.F.2    Rogalski, J.3    Roberts, K.P.4    Bilewicz, R.5
  • 68
    • 0001349444 scopus 로고    scopus 로고
    • Electropolymerized azines: a new group of electroactive polymers
    • Karyakin A.A., Karyakina E.E., Schmidt H.L. Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 1999, 11:149-155.
    • (1999) Electroanalysis , vol.11 , pp. 149-155
    • Karyakin, A.A.1    Karyakina, E.E.2    Schmidt, H.L.3
  • 69
    • 0001796393 scopus 로고    scopus 로고
    • Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation
    • Karyakin A.A., Karyakina E.E., Schuhmann W., Schmidt H.L. Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 1999, 11(8):553-557.
    • (1999) Electroanalysis , vol.11 , Issue.8 , pp. 553-557
    • Karyakin, A.A.1    Karyakina, E.E.2    Schuhmann, W.3    Schmidt, H.L.4
  • 70
    • 77950964728 scopus 로고    scopus 로고
    • Biofuel cells with switchable power output
    • Katz E. Biofuel cells with switchable power output. Electroanalysis 2010, 22:744-756.
    • (2010) Electroanalysis , vol.22 , pp. 744-756
    • Katz, E.1
  • 72
    • 71549154067 scopus 로고    scopus 로고
    • Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices
    • Katz E., Pita M. Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices. Chem. - Eur. J. 2009, 15:12554-12564.
    • (2009) Chem. - Eur. J. , vol.15 , pp. 12554-12564
    • Katz, E.1    Pita, M.2
  • 74
    • 60849084448 scopus 로고    scopus 로고
    • 2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer
    • 2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Fuel Cells 2009, 9:79-84.
    • (2009) Fuel Cells , vol.9 , pp. 79-84
    • Kavanagh, P.1    Boland, S.2    Jenkins, P.3    Leech, D.4
  • 75
    • 0037326627 scopus 로고    scopus 로고
    • A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V
    • Kim H.-H., Mano N., Zhang Y., Heller A. A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 2003, 150(2):A209-A213.
    • (2003) J. Electrochem. Soc. , vol.150 , Issue.2 , pp. A209-A213
    • Kim, H.-H.1    Mano, N.2    Zhang, Y.3    Heller, A.4
  • 76
    • 84872854343 scopus 로고    scopus 로고
    • Complete oxidation of methanol in an enzymatic biofuel cell by a self-assembling hydrogel created from three modified dehydrogenase
    • Kim Y.H., Campbell E., Yu J., Minteer S.D., Banta S. Complete oxidation of methanol in an enzymatic biofuel cell by a self-assembling hydrogel created from three modified dehydrogenase. Angew. Chem. 2013, 52:1437-1440.
    • (2013) Angew. Chem. , vol.52 , pp. 1437-1440
    • Kim, Y.H.1    Campbell, E.2    Yu, J.3    Minteer, S.D.4    Banta, S.5
  • 77
    • 39149120598 scopus 로고    scopus 로고
    • Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion polymers
    • Klotzbach T.L., Watt M., Ansari Y., Minteer S.D. Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion polymers. J. Membr. Sci. 2008, 311:81-88.
    • (2008) J. Membr. Sci. , vol.311 , pp. 81-88
    • Klotzbach, T.L.1    Watt, M.2    Ansari, Y.3    Minteer, S.D.4
  • 78
    • 33747753578 scopus 로고    scopus 로고
    • Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization
    • Klotzbach T.L., Watt M.M., Ansari Y., Minteer S.D. Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J. Membr. Sci. 2006, 282(1):276-283.
    • (2006) J. Membr. Sci. , vol.282 , Issue.1 , pp. 276-283
    • Klotzbach, T.L.1    Watt, M.M.2    Ansari, Y.3    Minteer, S.D.4
  • 79
    • 0031543435 scopus 로고    scopus 로고
    • Directed evolution of enzyme catalysts
    • Kuchner O., Arnold F.H. Directed evolution of enzyme catalysts. Trends Biotechnol. 1997, 15(12):523-530.
    • (1997) Trends Biotechnol. , vol.15 , Issue.12 , pp. 523-530
    • Kuchner, O.1    Arnold, F.H.2
  • 80
    • 0021409030 scopus 로고
    • Use of a bioelectrochemical cell for the synthesis of (bio)chemicals
    • Laane C., Pronk W., Franssen M., Veeger C. Use of a bioelectrochemical cell for the synthesis of (bio)chemicals. Enzyme Microb. Technol. 1984, 6(4):165-168.
    • (1984) Enzyme Microb. Technol. , vol.6 , Issue.4 , pp. 165-168
    • Laane, C.1    Pronk, W.2    Franssen, M.3    Veeger, C.4
  • 81
    • 79953213886 scopus 로고    scopus 로고
    • A perspective on microfluidic biofuel cells
    • Lee J.W., Kjeang E. A perspective on microfluidic biofuel cells. Biomicrofluidics 2010, 4. http://dx.doi.org/10.1063/1.3515523 (Article id: 041301).
    • (2010) Biomicrofluidics , vol.4
    • Lee, J.W.1    Kjeang, E.2
  • 82
    • 0037137649 scopus 로고    scopus 로고
    • Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in hydrogenase and other enzymes
    • Leger C., Jones A.K., Albracht S.P.J., Armstrong F.A. Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in hydrogenase and other enzymes. J. Phys. Chem. B 2002, 106(50):13058-13063.
    • (2002) J. Phys. Chem. B , vol.106 , Issue.50 , pp. 13058-13063
    • Leger, C.1    Jones, A.K.2    Albracht, S.P.J.3    Armstrong, F.A.4
  • 83
    • 80052955932 scopus 로고    scopus 로고
    • Membraneless enzymatic biofuel cells based on multi-walled carbon nanotubes
    • Li Y., Chen S.-M., Sarawathi R. Membraneless enzymatic biofuel cells based on multi-walled carbon nanotubes. Int. J. Electrochem. Sci. 2011, 6:3776-3788.
    • (2011) Int. J. Electrochem. Sci. , vol.6 , pp. 3776-3788
    • Li, Y.1    Chen, S.-M.2    Sarawathi, R.3
  • 84
    • 34147121063 scopus 로고    scopus 로고
    • Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase
    • Lim J., Cirigliano N., Wang J., Dunn B. Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase. Phys. Chem. Chem. Phys. 2007, 9(15):1809-1814.
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , Issue.15 , pp. 1809-1814
    • Lim, J.1    Cirigliano, N.2    Wang, J.3    Dunn, B.4
  • 85
    • 33845467074 scopus 로고    scopus 로고
    • Microfluidic biofuel cells: the influence of electrode diffusion layer on performance
    • Lim K.G., Palmore G.T.R. Microfluidic biofuel cells: the influence of electrode diffusion layer on performance. Biosens. Bioelectron. 2007, 22(6):941-947.
    • (2007) Biosens. Bioelectron. , vol.22 , Issue.6 , pp. 941-947
    • Lim, K.G.1    Palmore, G.T.R.2
  • 86
    • 77952302467 scopus 로고    scopus 로고
    • Membraneless enzymatic biofuel cells based on graphene nanosheets
    • Liu C., Alwarappan S., Chen Z., Kong X., Li C.-Z. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 2010, 25:1829-1833.
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1829-1833
    • Liu, C.1    Alwarappan, S.2    Chen, Z.3    Kong, X.4    Li, C.-Z.5
  • 87
    • 81355161676 scopus 로고    scopus 로고
    • Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces
    • Lojou E. Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces. Electrochim. Acta 2011, 56:10385-10397.
    • (2011) Electrochim. Acta , vol.56 , pp. 10385-10397
    • Lojou, E.1
  • 88
    • 0042208322 scopus 로고    scopus 로고
    • A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions
    • Mano N., Heller A. A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions. J. Electrochem. Soc. 2003, 150(8):A1136-A1138.
    • (2003) J. Electrochem. Soc. , vol.150 , Issue.8 , pp. A1136-A1138
    • Mano, N.1    Heller, A.2
  • 89
    • 0037194937 scopus 로고    scopus 로고
    • 2 cathodes based on their "wiring"
    • 2 cathodes based on their "wiring". J. Phys. Chem. B 2002, 106(34):8842-8848.
    • (2002) J. Phys. Chem. B , vol.106 , Issue.34 , pp. 8842-8848
    • Mano, N.1    Kim, H.2    Heller, A.3
  • 90
    • 0037024158 scopus 로고    scopus 로고
    • An oxygen cathode operating in a physiological solution
    • Mano N., Kim H., Zhang Y., Heller A. An oxygen cathode operating in a physiological solution. J. Am. Chem. Soc. 2002, 124(22):6480-6486.
    • (2002) J. Am. Chem. Soc. , vol.124 , Issue.22 , pp. 6480-6486
    • Mano, N.1    Kim, H.2    Zhang, Y.3    Heller, A.4
  • 92
    • 0037032299 scopus 로고    scopus 로고
    • A miniature biofuel cell operating in a physiological buffer
    • Mano N., Mao F., Heller A. A miniature biofuel cell operating in a physiological buffer. J. Am. Chem. Soc. 2002, 124(44):12962-12963.
    • (2002) J. Am. Chem. Soc. , vol.124 , Issue.44 , pp. 12962-12963
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 93
    • 0038513973 scopus 로고    scopus 로고
    • 2 biofuel cell and its operation in a living plant
    • 2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 2003, 125(21):6588-6594.
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.21 , pp. 6588-6594
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 94
    • 10444278102 scopus 로고    scopus 로고
    • On the parameters affecting the characteristics of the "wired" glucose oxidase anode
    • Mano N., Mao F., Heller A. On the parameters affecting the characteristics of the "wired" glucose oxidase anode. Electroanal. Chem. 2005, 574(2):347-357.
    • (2005) Electroanal. Chem. , vol.574 , Issue.2 , pp. 347-357
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 96
    • 0037462122 scopus 로고    scopus 로고
    • Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels
    • Mao F., Mano N., Heller A. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels. J. Am. Chem. Soc. 2003, 125(16):4951-4957.
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.16 , pp. 4951-4957
    • Mao, F.1    Mano, N.2    Heller, A.3
  • 97
    • 84861348867 scopus 로고    scopus 로고
    • Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization
    • Meredith M., Giroud F., Minteer S.D. Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization. Electrochim. Acta 2012, 72:207-214.
    • (2012) Electrochim. Acta , vol.72 , pp. 207-214
    • Meredith, M.1    Giroud, F.2    Minteer, S.D.3
  • 98
    • 79959989284 scopus 로고    scopus 로고
    • Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor
    • Meredith M.T., Minteer S.D. Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor. Anal. Chem. 2011, 83:5436-5441.
    • (2011) Anal. Chem. , vol.83 , pp. 5436-5441
    • Meredith, M.T.1    Minteer, S.D.2
  • 99
    • 84886788291 scopus 로고    scopus 로고
    • Hydrogen peroxide produced by glucose oxidase affects performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as replacement
    • Milton R.D., Giroud F., Thumser A.E., Minteer S.D., Slade R.C.T. Hydrogen peroxide produced by glucose oxidase affects performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as replacement. Phys. Chem. Chem. Phys. 2013, 15(44):19371-19379.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , Issue.44 , pp. 19371-19379
    • Milton, R.D.1    Giroud, F.2    Thumser, A.E.3    Minteer, S.D.4    Slade, R.C.T.5
  • 100
    • 84888633799 scopus 로고    scopus 로고
    • Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide
    • Milton R.D., Giroud F., Thumser A.E., Minteer S.D., Slade R.C.T. Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chem. Commun. 2014, 50(1):94-96.
    • (2014) Chem. Commun. , vol.50 , Issue.1 , pp. 94-96
    • Milton, R.D.1    Giroud, F.2    Thumser, A.E.3    Minteer, S.D.4    Slade, R.C.T.5
  • 101
    • 84871851323 scopus 로고    scopus 로고
    • Nanobioelectrocatalysis and its applications in biosensors, biofuel cells and bioprocessing
    • Minteer S.D. Nanobioelectrocatalysis and its applications in biosensors, biofuel cells and bioprocessing. Top. Catal. 2012, 55(16-18):1157-1161.
    • (2012) Top. Catal. , vol.55 , Issue.16-18 , pp. 1157-1161
    • Minteer, S.D.1
  • 102
    • 79953902587 scopus 로고    scopus 로고
    • Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells
    • Miyake T., Yoshino S., Yamada T., Hata K., Nishizawa M. Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J. Am. Chem. Soc. 2011, 133(13):5129-5134.
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.13 , pp. 5129-5134
    • Miyake, T.1    Yoshino, S.2    Yamada, T.3    Hata, K.4    Nishizawa, M.5
  • 103
    • 84855606443 scopus 로고    scopus 로고
    • Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels: advantages of synthetic enzymatic metabolon formation
    • Moehlenbrock M.J., Meredith M.T., Minteer S.D. Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels: advantages of synthetic enzymatic metabolon formation. ACS Catal. 2012, 2(1):17-25.
    • (2012) ACS Catal. , vol.2 , Issue.1 , pp. 17-25
    • Moehlenbrock, M.J.1    Meredith, M.T.2    Minteer, S.D.3
  • 105
    • 4143087202 scopus 로고    scopus 로고
    • Improving the environment for immobilized dehydrogenase enzymes by modifying nafion with tetraalkylammonium bromides
    • Moore C.M., Akers N.L., Hill A.D., Johnson Z.C., Minteer S.D. Improving the environment for immobilized dehydrogenase enzymes by modifying nafion with tetraalkylammonium bromides. Biomacromolecules 2004, 5(4):1241-1247.
    • (2004) Biomacromolecules , vol.5 , Issue.4 , pp. 1241-1247
    • Moore, C.M.1    Akers, N.L.2    Hill, A.D.3    Johnson, Z.C.4    Minteer, S.D.5
  • 106
    • 13844321257 scopus 로고    scopus 로고
    • Microchip-based ethanol/oxygen biofuel cell
    • Moore C.M., Minteer S.D., Martin R.S. Microchip-based ethanol/oxygen biofuel cell. Lab Chip 2004, 5(3):218-225.
    • (2004) Lab Chip , vol.5 , Issue.3 , pp. 218-225
    • Moore, C.M.1    Minteer, S.D.2    Martin, R.S.3
  • 107
    • 72149128516 scopus 로고    scopus 로고
    • Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell
    • Murata K., Kajiya K., Nakamura N., Ohno H. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2009, 2(12):1280-1285.
    • (2009) Energy Environ. Sci. , vol.2 , Issue.12 , pp. 1280-1285
    • Murata, K.1    Kajiya, K.2    Nakamura, N.3    Ohno, H.4
  • 110
    • 84884658053 scopus 로고    scopus 로고
    • Mathematical modelling of an enzymatic fuel cell with an air-breathing cathode
    • Osman M.H., Shah A.A., Wills R.G.A., Walsh F.C. Mathematical modelling of an enzymatic fuel cell with an air-breathing cathode. Electrochim. Acta 2013, 112(0):386-393.
    • (2013) Electrochim. Acta , vol.112 , pp. 386-393
    • Osman, M.H.1    Shah, A.A.2    Wills, R.G.A.3    Walsh, F.C.4
  • 111
    • 0032002467 scopus 로고    scopus 로고
    • +-dependent dehydrogenases as catalysts: application of an electro-enzymic method to regenerate nicotinamide adenine dinucleotide at low overpotentials
    • +-dependent dehydrogenases as catalysts: application of an electro-enzymic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 1998, 443(1):155-161.
    • (1998) J. Electroanal. Chem. , vol.443 , Issue.1 , pp. 155-161
    • Palmore, G.1    Bertschy, H.2    Bergens, S.H.3    Whitesides, G.M.4
  • 112
    • 0022151771 scopus 로고
    • Biofuel anode based on d-glucose dehydrogenase, nicotinamide adenine dinucleotide and a modified electrode
    • Persson B., Gorton L., Johansson G., Torstensson A. Biofuel anode based on d-glucose dehydrogenase, nicotinamide adenine dinucleotide and a modified electrode. Enzyme Microb. Technol. 1985, 7(11):549-552.
    • (1985) Enzyme Microb. Technol. , vol.7 , Issue.11 , pp. 549-552
    • Persson, B.1    Gorton, L.2    Johansson, G.3    Torstensson, A.4
  • 114
    • 77955776882 scopus 로고    scopus 로고
    • High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates
    • Ramasamy R.P., Luckarift H.R., Ivnitski D.M., Atanassov P.B., Johnson G.R. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Chem. Commun. 2010, 46:6045-6047.
    • (2010) Chem. Commun. , vol.46 , pp. 6045-6047
    • Ramasamy, R.P.1    Luckarift, H.R.2    Ivnitski, D.M.3    Atanassov, P.B.4    Johnson, G.R.5
  • 116
    • 84881502301 scopus 로고    scopus 로고
    • Enzymatic biofuel cell with a flow-through toray paper bioanode for improved fuel utilization
    • Reid R.C., Giroud F., Minteer S.D., Gale B.K. Enzymatic biofuel cell with a flow-through toray paper bioanode for improved fuel utilization. J. Electrochem. Soc. 2013, 160(9):H612-H619.
    • (2013) J. Electrochem. Soc. , vol.160 , Issue.9 , pp. H612-H619
    • Reid, R.C.1    Giroud, F.2    Minteer, S.D.3    Gale, B.K.4
  • 117
    • 84920277451 scopus 로고    scopus 로고
    • Contact lens biofuel cell tested in a synthetic tear solution
    • Reid R.C., Minteer S.D., Gale B.K. Contact lens biofuel cell tested in a synthetic tear solution. Biosens. Bioelectron. 2015, 68(0):142-148.
    • (2015) Biosens. Bioelectron. , vol.68 , pp. 142-148
    • Reid, R.C.1    Minteer, S.D.2    Gale, B.K.3
  • 118
    • 84876565676 scopus 로고    scopus 로고
    • High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix
    • Reuillard B., Le Goff A., Agnes C., Holzinger M., Zebda A., Gondran C., Elouarzaki K., Cosnier S. High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys. Chem. Chem. Phys. 2013, 15(14):4892-4896.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , Issue.14 , pp. 4892-4896
    • Reuillard, B.1    Le Goff, A.2    Agnes, C.3    Holzinger, M.4    Zebda, A.5    Gondran, C.6    Elouarzaki, K.7    Cosnier, S.8
  • 120
    • 79960896249 scopus 로고    scopus 로고
    • Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design
    • Rincon R.A., Lau C., Luckarift H.R., Garcia K.E., Adkins E., Johnson G.R., Atanassov P. Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron. 2011, 27:132-136.
    • (2011) Biosens. Bioelectron. , vol.27 , pp. 132-136
    • Rincon, R.A.1    Lau, C.2    Luckarift, H.R.3    Garcia, K.E.4    Adkins, E.5    Johnson, G.R.6    Atanassov, P.7
  • 121
    • 77950998242 scopus 로고    scopus 로고
    • Enzymatic anodes for hydrogen fuel cells based on covalent attachment of Ni-Fe hydrogenases and direct electron transfer to SAM-modified gold electrodes
    • Ruediger O., Gutierrez-Sanchez C., Olea D., Pereira I.A.C., Velez M., Fernandez V.M., De L.A.L. Enzymatic anodes for hydrogen fuel cells based on covalent attachment of Ni-Fe hydrogenases and direct electron transfer to SAM-modified gold electrodes. Electroanalysis 2010, 22:776-783.
    • (2010) Electroanalysis , vol.22 , pp. 776-783
    • Ruediger, O.1    Gutierrez-Sanchez, C.2    Olea, D.3    Pereira, I.A.C.4    Velez, M.5    Fernandez, V.M.6    De, L.A.L.7
  • 123
    • 84866371141 scopus 로고    scopus 로고
    • A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application
    • Schubart I.W., Göbel G., Lisdat F. A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application. Electrochim. Acta 2012, 82(0):224-232.
    • (2012) Electrochim. Acta , vol.82 , pp. 224-232
    • Schubart, I.W.1    Göbel, G.2    Lisdat, F.3
  • 124
    • 84866371141 scopus 로고    scopus 로고
    • A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH) electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell applications
    • Schubart I.W., Goebel G., Lisdat F. A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH) electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell applications. Electrochim. Acta 2012, 82:224-232.
    • (2012) Electrochim. Acta , vol.82 , pp. 224-232
    • Schubart, I.W.1    Goebel, G.2    Lisdat, F.3
  • 125
    • 77955566033 scopus 로고    scopus 로고
    • Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide
    • Scodeller P., Carballo R., Szamocki R., Levin L., Forchiassin F., Calvo E.J. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. J. Am. Chem. Soc. 2010, 132(32):11132-11140.
    • (2010) J. Am. Chem. Soc. , vol.132 , Issue.32 , pp. 11132-11140
    • Scodeller, P.1    Carballo, R.2    Szamocki, R.3    Levin, L.4    Forchiassin, F.5    Calvo, E.J.6
  • 126
    • 84868640042 scopus 로고    scopus 로고
    • Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints
    • Shao M., Nadeem Zafar M., Sygmund C., Guschin D.A., Ludwig R., Peterbauer C.K., Schuhmann W., Gorton L. Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints. Biosens. Bioelectron. 2013, 40(1):308-314.
    • (2013) Biosens. Bioelectron. , vol.40 , Issue.1 , pp. 308-314
    • Shao, M.1    Nadeem Zafar, M.2    Sygmund, C.3    Guschin, D.A.4    Ludwig, R.5    Peterbauer, C.K.6    Schuhmann, W.7    Gorton, L.8
  • 127
    • 84887074683 scopus 로고    scopus 로고
    • Flexible and high-performance paper-based biofuel cells using printed porous carbon electrodes
    • Shitanda I., Kato S., Hoshi Y., Itagaki M., Tsujimura S. Flexible and high-performance paper-based biofuel cells using printed porous carbon electrodes. Chem. Commun. 2013, 49(94):11110-11112.
    • (2013) Chem. Commun. , vol.49 , Issue.94 , pp. 11110-11112
    • Shitanda, I.1    Kato, S.2    Hoshi, Y.3    Itagaki, M.4    Tsujimura, S.5
  • 128
    • 84894143603 scopus 로고    scopus 로고
    • Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode
    • So K., Kawai S., Hamano Y., Kitazumi Y., Shirai O., Hibi M., Ogawa J., Kano K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys. Chem. Chem. Phys. 2014, 16(10):4823-4829.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , Issue.10 , pp. 4823-4829
    • So, K.1    Kawai, S.2    Hamano, Y.3    Kitazumi, Y.4    Shirai, O.5    Hibi, M.6    Ogawa, J.7    Kano, K.8
  • 129
    • 81355139030 scopus 로고    scopus 로고
    • Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell
    • Sokic-Lazic D., de A.A.R., Minteer S.D. Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell. Electrochim. Acta 2011, 56:10772-10775.
    • (2011) Electrochim. Acta , vol.56 , pp. 10772-10775
    • Sokic-Lazic, D.1    de, A.A.R.2    Minteer, S.D.3
  • 130
    • 65749088973 scopus 로고    scopus 로고
    • Citric acid cycle biomimic on a carbon electrode
    • Sokic-Lazic D., Minteer S.D. Citric acid cycle biomimic on a carbon electrode. Biosens. Bioelectron. 2008, 24:945-950.
    • (2008) Biosens. Bioelectron. , vol.24 , pp. 945-950
    • Sokic-Lazic, D.1    Minteer, S.D.2
  • 131
    • 67651233807 scopus 로고    scopus 로고
    • Pyruvate/air enzymatic biofuel cell capable of complete oxidation
    • Sokic-Lazic D., Minteer S.D. Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem. Solid State Lett. 2009, 12(9):F26-F28.
    • (2009) Electrochem. Solid State Lett. , vol.12 , Issue.9 , pp. F26-F28
    • Sokic-Lazic, D.1    Minteer, S.D.2
  • 132
    • 3142719124 scopus 로고    scopus 로고
    • 2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V
    • 2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 2004, 126(27):8368-8369.
    • (2004) J. Am. Chem. Soc. , vol.126 , Issue.27 , pp. 8368-8369
    • Soukharev, V.1    Mano, N.2    Heller, A.3
  • 134
    • 33846011083 scopus 로고    scopus 로고
    • Direct electron transfer - a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from phanerochaete chrysosporium
    • Stoica L., Ruzgas T., Ludwig R., Haltrich D., Gorton L. Direct electron transfer - a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from phanerochaete chrysosporium. Langmuir 2006, 22(25):10801-10806.
    • (2006) Langmuir , vol.22 , Issue.25 , pp. 10801-10806
    • Stoica, L.1    Ruzgas, T.2    Ludwig, R.3    Haltrich, D.4    Gorton, L.5
  • 139
    • 68549096297 scopus 로고    scopus 로고
    • Biofuel cell controlled by enzyme logic network-approaching physiologically regulated devices
    • Tam T.K., Pita M., Ornatska M., Katz E. Biofuel cell controlled by enzyme logic network-approaching physiologically regulated devices. Bioelectrochemistry 2009, 76:4-9.
    • (2009) Bioelectrochemistry , vol.76 , pp. 4-9
    • Tam, T.K.1    Pita, M.2    Ornatska, M.3    Katz, E.4
  • 140
    • 48249108041 scopus 로고    scopus 로고
    • Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells
    • Tasca F., Gorton L., Harreither W., Haltrich D., Ludwig R., Noll G. Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells. J. Phys. Chem. C 2008, 112(26):9956-9961.
    • (2008) J. Phys. Chem. C , vol.112 , Issue.26 , pp. 9956-9961
    • Tasca, F.1    Gorton, L.2    Harreither, W.3    Haltrich, D.4    Ludwig, R.5    Noll, G.6
  • 141
    • 64849105998 scopus 로고    scopus 로고
    • Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida
    • Tasca F., Gorton L., Harreither W., Haltrich D., Ludwig R., Noll G. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Anal. Chem. 2009, 81:2791-2798.
    • (2009) Anal. Chem. , vol.81 , pp. 2791-2798
    • Tasca, F.1    Gorton, L.2    Harreither, W.3    Haltrich, D.4    Ludwig, R.5    Noll, G.6
  • 143
    • 68549087236 scopus 로고    scopus 로고
    • Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis
    • Tkac J., Svitel J., Vostiar I., Navratil M., Gemeiner P. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry 2009, 76:53-62.
    • (2009) Bioelectrochemistry , vol.76 , pp. 53-62
    • Tkac, J.1    Svitel, J.2    Vostiar, I.3    Navratil, M.4    Gemeiner, P.5
  • 144
    • 33947110915 scopus 로고    scopus 로고
    • An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation
    • Togo M., Takamura A., Asai T., Kaji H., Nishizawa M. An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochim. Acta 2007, 52(14):4669-4674.
    • (2007) Electrochim. Acta , vol.52 , Issue.14 , pp. 4669-4674
    • Togo, M.1    Takamura, A.2    Asai, T.3    Kaji, H.4    Nishizawa, M.5
  • 145
  • 146
    • 31944435660 scopus 로고    scopus 로고
    • Development of a membraneless ethanol/oxygen biofuel cell
    • Topcagic S., Minteer S.D. Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta 2006, 51(11):2168-2172.
    • (2006) Electrochim. Acta , vol.51 , Issue.11 , pp. 2168-2172
    • Topcagic, S.1    Minteer, S.D.2
  • 147
    • 66449099153 scopus 로고    scopus 로고
    • Bioelectrocatalysis of ethanol via PQQ-dependent dehydrogenases utilizing carbon nanomaterial supports
    • Treu B.L., Arechederra R.L., Minteer S.D. Bioelectrocatalysis of ethanol via PQQ-dependent dehydrogenases utilizing carbon nanomaterial supports. J. Nanosci. Nanotechnol. 2009, 9(4):2374-2380.
    • (2009) J. Nanosci. Nanotechnol. , vol.9 , Issue.4 , pp. 2374-2380
    • Treu, B.L.1    Arechederra, R.L.2    Minteer, S.D.3
  • 148
    • 84920546246 scopus 로고    scopus 로고
    • Improved bioelectrocatalytic oxidation of sucrose in a biofuel cell with an enzyme cascade assembled on a DNA scaffold
    • Van Nguyen K., Giroud F., Minteer S.D. Improved bioelectrocatalytic oxidation of sucrose in a biofuel cell with an enzyme cascade assembled on a DNA scaffold. J. Electrochem. Soc. 2014, 161(14):H930-H933.
    • (2014) J. Electrochem. Soc. , vol.161 , Issue.14 , pp. H930-H933
    • Van Nguyen, K.1    Giroud, F.2    Minteer, S.D.3
  • 149
    • 35748933836 scopus 로고    scopus 로고
    • Investigating and exploiting the electrocatalytic properties of hydrogenases
    • Vincent K.A., Parkin A., Armstrong F.A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 2007, 107:4366-4413.
    • (2007) Chem. Rev. , vol.107 , pp. 4366-4413
    • Vincent, K.A.1    Parkin, A.2    Armstrong, F.A.3
  • 150
    • 84883876329 scopus 로고    scopus 로고
    • Nanomaterials for bio-functionalized electrodes: recent trends
    • Walcarius A., Minteer S.D., Wang J., Lin Y., Merkoci A. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. B 2013, 1(38):4878-4908.
    • (2013) J. Mater. Chem. B , vol.1 , Issue.38 , pp. 4878-4908
    • Walcarius, A.1    Minteer, S.D.2    Wang, J.3    Lin, Y.4    Merkoci, A.5
  • 151
    • 15844413404 scopus 로고    scopus 로고
    • Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes
    • Wang M., Shen Y., Liu Y., Wang T., Zhao F., Liu B., Dong S. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J. Electroanal. Chem. 2005, 578(1):121-127.
    • (2005) J. Electroanal. Chem. , vol.578 , Issue.1 , pp. 121-127
    • Wang, M.1    Shen, Y.2    Liu, Y.3    Wang, T.4    Zhao, F.5    Liu, B.6    Dong, S.7
  • 152
    • 79956004072 scopus 로고    scopus 로고
    • A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase
    • Wang P.-h, Best R.B., Blumberger J. A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase. Phys. Chem. Chem. Phys. 2011, 13:7708-7719.
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 7708-7719
    • Wang, P.-H.1    Best, R.B.2    Blumberger, J.3
  • 154
    • 73449106402 scopus 로고    scopus 로고
    • A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition
    • Wen D., Deng L., Zhou M., Guo S., Shang L., Xu G., Dong S. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens. Bioelectron. 2010, 25:1544-1547.
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1544-1547
    • Wen, D.1    Deng, L.2    Zhou, M.3    Guo, S.4    Shang, L.5    Xu, G.6    Dong, S.7
  • 156
    • 33751222848 scopus 로고    scopus 로고
    • Electrical contacting of redox proteins by nanotechnological means
    • Willner B., Katz E., Willner I. Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotechnol. 2006, 17:589-596.
    • (2006) Curr. Opin. Biotechnol. , vol.17 , pp. 589-596
    • Willner, B.1    Katz, E.2    Willner, I.3
  • 157
    • 84891822540 scopus 로고    scopus 로고
    • On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system
    • Wooten M., Karra S., Zhang M., Gorski W. On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal. Chem. 2014, 86(1):752-757.
    • (2014) Anal. Chem. , vol.86 , Issue.1 , pp. 752-757
    • Wooten, M.1    Karra, S.2    Zhang, M.3    Gorski, W.4
  • 158
    • 84922016361 scopus 로고    scopus 로고
    • Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry
    • Wu F., Minteer S. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew. Chem. Int. Ed. 2015, 54(6):1851-1854.
    • (2015) Angew. Chem. Int. Ed. , vol.54 , Issue.6 , pp. 1851-1854
    • Wu, F.1    Minteer, S.2
  • 160
    • 84910631034 scopus 로고    scopus 로고
    • Characterizing efficiency of multi-enzyme cascade-based biofuel cells by Product
    • Xu S., Minteer S.D. Characterizing efficiency of multi-enzyme cascade-based biofuel cells by Product. Anal. ECS Electrochem. Lett. 2014, 3(8):H24-H27.
    • (2014) Anal. ECS Electrochem. Lett. , vol.3 , Issue.8 , pp. H24-H27
    • Xu, S.1    Minteer, S.D.2
  • 161
    • 0041993216 scopus 로고
    • Bioelectrochemistry. I. Enzyme utilizing biofuel cell studies
    • Yahiro A.T., Lee S.M., Kimble D.O. Bioelectrochemistry. I. Enzyme utilizing biofuel cell studies. Biochim. Biophys. Acta 1964, 88(2):375-383.
    • (1964) Biochim. Biophys. Acta , vol.88 , Issue.2 , pp. 375-383
    • Yahiro, A.T.1    Lee, S.M.2    Kimble, D.O.3
  • 163
    • 79952958297 scopus 로고    scopus 로고
    • Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications
    • Yehezkeli O., Tel-Vered R., Raichlin S., Willner I. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 2011, 5:2385-2391.
    • (2011) ACS Nano , vol.5 , pp. 2385-2391
    • Yehezkeli, O.1    Tel-Vered, R.2    Raichlin, S.3    Willner, I.4
  • 164
    • 81955167958 scopus 로고    scopus 로고
    • Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications
    • Yu E.H., Prodanovic R., Gueven G., Ostafe R., Schwaneberg U. Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications. Appl. Biochem. Biotechnol. 2011, 165:1448-1457.
    • (2011) Appl. Biochem. Biotechnol. , vol.165 , pp. 1448-1457
    • Yu, E.H.1    Prodanovic, R.2    Gueven, G.3    Ostafe, R.4    Schwaneberg, U.5
  • 165
    • 84867862483 scopus 로고    scopus 로고
    • Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes
    • 1365/1361-1365/1366, S1365/1361-S1365/1363
    • Zebda A., Gondran C., Le G.A., Holzinger M., Cinquin P., Cosnier S. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2011, 2. 1365/1361-1365/1366, S1365/1361-S1365/1363.
    • (2011) Nat. Commun. , vol.2
    • Zebda, A.1    Gondran, C.2    Le, G.A.3    Holzinger, M.4    Cinquin, P.5    Cosnier, S.6
  • 166
    • 77955473078 scopus 로고    scopus 로고
    • Membraneless microchannel glucose biofuel cell with improved electrical performances
    • Zebda A., Renaud L., Cretin M., Innocent C., Ferrigno R., Tingry S. Membraneless microchannel glucose biofuel cell with improved electrical performances. Sens. Actuators B 2010, B149:44-50.
    • (2010) Sens. Actuators B , vol.B149 , pp. 44-50
    • Zebda, A.1    Renaud, L.2    Cretin, M.3    Innocent, C.4    Ferrigno, R.5    Tingry, S.6
  • 170
    • 33645465106 scopus 로고    scopus 로고
    • Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives
    • Zheng W., Li Q., Su L., Yan Y., Zhang J., Mao L. Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 2006, 18(6):587-594.
    • (2006) Electroanalysis , vol.18 , Issue.6 , pp. 587-594
    • Zheng, W.1    Li, Q.2    Su, L.3    Yan, Y.4    Zhang, J.5    Mao, L.6
  • 171
    • 65549093906 scopus 로고    scopus 로고
    • Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing Boolean logic operations: approaching "smart" physiologically controlled biointerfaces
    • Zhou J., Tam T.K., Pita M., Ornatska M., Minko S., Katz E. Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing Boolean logic operations: approaching "smart" physiologically controlled biointerfaces. ACS Appl. Mater. Interfaces 2009, 1:144-149.
    • (2009) ACS Appl. Mater. Interfaces , vol.1 , pp. 144-149
    • Zhou, J.1    Tam, T.K.2    Pita, M.3    Ornatska, M.4    Minko, S.5    Katz, E.6
  • 173
    • 33645864661 scopus 로고    scopus 로고
    • Making glucose oxidase fit for biofuel cell applications by directed protein evolution
    • Zhu Z., Momeu C., Zakhartsev M., Schwaneberg U. Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens. Bioelectron. 2006, 21(11):2046-2051.
    • (2006) Biosens. Bioelectron. , vol.21 , Issue.11 , pp. 2046-2051
    • Zhu, Z.1    Momeu, C.2    Zakhartsev, M.3    Schwaneberg, U.4
  • 174
    • 84892973839 scopus 로고    scopus 로고
    • A high-energy-density sugar biobattery via a synthetic enzymatic pathway
    • Zhu Z., Tam T.K., Sun F., You C., Zhang Y.-H.P. A high-energy-density sugar biobattery via a synthetic enzymatic pathway. Nat. Commun. 2014, 5:3026.
    • (2014) Nat. Commun. , vol.5 , pp. 3026
    • Zhu, Z.1    Tam, T.K.2    Sun, F.3    You, C.4    Zhang, Y.-H.P.5
  • 175
    • 34248349964 scopus 로고    scopus 로고
    • Directed evolution of glucose oxidase from Aspergillus niger for ferrocenemethanol-mediated electron transfer
    • Zhu Z., Wang M., Gautam A., Nazor J., Morneu C., Prodanovic R., Schwaneberg U. Directed evolution of glucose oxidase from Aspergillus niger for ferrocenemethanol-mediated electron transfer. Biotechnol. J. 2007, 2:241-248.
    • (2007) Biotechnol. J. , vol.2 , pp. 241-248
    • Zhu, Z.1    Wang, M.2    Gautam, A.3    Nazor, J.4    Morneu, C.5    Prodanovic, R.6    Schwaneberg, U.7
  • 176
    • 79959347327 scopus 로고    scopus 로고
    • Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway
    • Zhu Z., Wang Y., Minteer S.D., Percival Zhang Y.H. Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. J. Power Sources 2011, 196(18):7505-7509.
    • (2011) J. Power Sources , vol.196 , Issue.18 , pp. 7505-7509
    • Zhu, Z.1    Wang, Y.2    Minteer, S.D.3    Percival Zhang, Y.H.4
  • 177
    • 84871162276 scopus 로고    scopus 로고
    • Efficient air-breathing biocathodes for zinc/oxygen batteries
    • Zloczewska A., Jönsson-Niedziolka M. Efficient air-breathing biocathodes for zinc/oxygen batteries. J. Power Sources 2013, 228(0):104-111.
    • (2013) J. Power Sources , vol.228 , pp. 104-111
    • Zloczewska, A.1    Jönsson-Niedziolka, M.2
  • 178
    • 79956113881 scopus 로고    scopus 로고
    • Induced evolution of PQQ-dependent alcohol dehydrogenase activity in Gluconobacter sp.33 for use in enzymatic biofuel cells
    • Zulic Z., Minteer S.D. Induced evolution of PQQ-dependent alcohol dehydrogenase activity in Gluconobacter sp.33 for use in enzymatic biofuel cells. J. Biobased Mater. Bioenergy 2011, 5:63-69.
    • (2011) J. Biobased Mater. Bioenergy , vol.5 , pp. 63-69
    • Zulic, Z.1    Minteer, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.