메뉴 건너뛰기




Volumn 1398, Issue , 1998, Pages 196-207

Naive bayesian classifier committees

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; FORECASTING;

EID: 84957081220     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/bfb0026690     Document Type: Conference Paper
Times cited : (39)

References (24)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors. Machine Learning
    • Breiman, L.: Bagging predictors. Machine Learning. 24 (1996) 123-140.
    • (1996) , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • San Francisco, CA: Morgan Kaufmann
    • Domingos, P. and Pazzani, M.: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Proceedings of the 13th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann (1996) 105-112.
    • (1996) Proceedings of the 13Th International Conference on Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 84957066035 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting. Unpublished manuscript, available from the authors' home pages
    • Freund, Y. and Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Unpublished manuscript, available from the authors' home pages ("http://www.research.att.com/{"yoav,"schapire}") (1996a).
    • (1996)
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Menlo Park, CA: AAAI Press/Cambridge, MA: MIT Press
    • Kira, K. and Rendell, L.A.: The feature selection problem: Traditional methods and a new algorithm. Proceedings of the 10th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press/Cambridge, MA: MIT Press (1992) 129-134.
    • (1992) Proceedings of the 10Th National Conference on Artificial Intelligence , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 15
    • 0003112380 scopus 로고
    • Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition
    • Amsterdam: IOS Press
    • Kononenko, I.: Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition. In B. Wielinga et al. (Eds.), Current Trends in Knowledge Acquisition. Amsterdam: IOS Press (1990).
    • (1990) Current Trends in Knowledge Acquisition
    • Kononenko, I.1    Wielinga, B.2
  • 18
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • New Orleans, LA: The AAAI Press
    • Langley, P.: Selection of relevant features in machine learning. Proceeding of the AAAI Fall Symposium on Relevance, New Orleans, LA: The AAAI Press (1994).
    • (1994) Proceeding of the AAAI Fall Symposium on Relevance
    • Langley, P.1
  • 20
    • 84957105960 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases Irvine, CA: University of California, Department of Information and Computer Science
    • Merz, C.J. and Murphy, P.M.: UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/Thalearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science (1997).
    • (1997)
    • Merz, C.J.1    Murphy, P.M.2
  • 22
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting Menlo Park: The AAAI Press
    • Quinlan, J.R.: Bagging, boosting, and C4.5. Proceedings of the 13th National Conference on Artificial Intelligence, Menlo Park: The AAAI Press (1996) 725-730.
    • (1996) , pp. 725-730
    • Quinlan, J.R.1
  • 24
    • 84957046634 scopus 로고
    • Discretization of continuous-valued attributes and instance-based learning (Technical Report 491), Sydney, Australia: University of Sydney, Gasser Department of Computer Science
    • Ting, K.M.: Discretization of continuous-valued attributes and instance-based learning (Technical Report 491). Sydney, Australia: University of Sydney, Gasser Department of Computer Science (1994).
    • (1994)
    • Ting, K.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.