-
1
-
-
36549019525
-
Exergy analysis of hydrogen production via steam methane reforming
-
Simpson A.P., Lutz A.E. Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 2007, 32:4811-4820.
-
(2007)
Int J Hydrogen Energy
, vol.32
, pp. 4811-4820
-
-
Simpson, A.P.1
Lutz, A.E.2
-
2
-
-
84922210686
-
2 production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology
-
2 production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology. Int J Energy Res 2015, 39:356-369.
-
(2015)
Int J Energy Res
, vol.39
, pp. 356-369
-
-
Zhu, L.1
Fan, J.2
-
3
-
-
84918833470
-
Catalytic hydrogen production from fossil fuels via the water gas shift reaction
-
Gradisher L., Dutcher B., Fan M. Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl Energy 2015, 139:335-349.
-
(2015)
Appl Energy
, vol.139
, pp. 335-349
-
-
Gradisher, L.1
Dutcher, B.2
Fan, M.3
-
4
-
-
84930226481
-
Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration
-
Song C., Liu Q., Ji N., Kansha Y., Tsutsumi A. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Appl Energy 2015, 154:392-401.
-
(2015)
Appl Energy
, vol.154
, pp. 392-401
-
-
Song, C.1
Liu, Q.2
Ji, N.3
Kansha, Y.4
Tsutsumi, A.5
-
6
-
-
35748978205
-
Membranes for hydrogen separation
-
Ockwig N.W., Nenoff T.M. Membranes for hydrogen separation. Chem Rev 2007, 107:4078-4110.
-
(2007)
Chem Rev
, vol.107
, pp. 4078-4110
-
-
Ockwig, N.W.1
Nenoff, T.M.2
-
7
-
-
84867405050
-
Comparative exergy analysis of sorption enhanced and conventional methane steam reforming
-
Tzanetis K., Martavaltzi C., Lemonidou A. Comparative exergy analysis of sorption enhanced and conventional methane steam reforming. Int J Hydrogen Energy 2012, 37:16308-16320.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 16308-16320
-
-
Tzanetis, K.1
Martavaltzi, C.2
Lemonidou, A.3
-
8
-
-
84921523008
-
Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel
-
Fan J., Zhu L. Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel. Appl Therm Eng 2015, 75:103-114.
-
(2015)
Appl Therm Eng
, vol.75
, pp. 103-114
-
-
Fan, J.1
Zhu, L.2
-
9
-
-
31444455231
-
Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time
-
Dunker A.M., Kumar S., Mulawa P.A. Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time. Int J Hydrogen Energy 2006, 31:473-484.
-
(2006)
Int J Hydrogen Energy
, vol.31
, pp. 473-484
-
-
Dunker, A.M.1
Kumar, S.2
Mulawa, P.A.3
-
10
-
-
0035440276
-
Solar-thermal processing of methane to produce hydrogen and syngas
-
Dahl J.K., Tamburini J., Weimer A.W., Lewandowski A., Pitts R., Bingham C. Solar-thermal processing of methane to produce hydrogen and syngas. Energy Fuels 2001, 15:1227-1232.
-
(2001)
Energy Fuels
, vol.15
, pp. 1227-1232
-
-
Dahl, J.K.1
Tamburini, J.2
Weimer, A.W.3
Lewandowski, A.4
Pitts, R.5
Bingham, C.6
-
11
-
-
77955514667
-
A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting
-
Rodat S., Abanades S., Sans J.-L., Flamant G. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting. Int J Hydrogen Energy 2010, 35:7748-7758.
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 7748-7758
-
-
Rodat, S.1
Abanades, S.2
Sans, J.-L.3
Flamant, G.4
-
13
-
-
0038580628
-
Hydrogen production by direct contact pyrolysis of natural gas
-
Serban M., Lewis M.A., Marshall C.L., Doctor R.D. Hydrogen production by direct contact pyrolysis of natural gas. Energy Fuels 2003, 17:705-713.
-
(2003)
Energy Fuels
, vol.17
, pp. 705-713
-
-
Serban, M.1
Lewis, M.A.2
Marshall, C.L.3
Doctor, R.D.4
-
15
-
-
0002953172
-
2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel
-
2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy Fuels 1998, 12:41-48.
-
(1998)
Energy Fuels
, vol.12
, pp. 41-48
-
-
Muradov, N.Z.1
-
16
-
-
0347573855
-
Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts
-
Zhang T., Amiridis M.D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl Catal A Gen 1998, 167:161-172.
-
(1998)
Appl Catal A Gen
, vol.167
, pp. 161-172
-
-
Zhang, T.1
Amiridis, M.D.2
-
18
-
-
84904800476
-
Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports
-
Li X., Zhu G., Qi S., Huang J., Yang B. Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports. Appl Energy 2014, 130:846-852.
-
(2014)
Appl Energy
, vol.130
, pp. 846-852
-
-
Li, X.1
Zhu, G.2
Qi, S.3
Huang, J.4
Yang, B.5
-
19
-
-
0142092185
-
Catalysis of methane decomposition over elemental carbon
-
Muradov N. Catalysis of methane decomposition over elemental carbon. Catal Commun 2001, 2:89-94.
-
(2001)
Catal Commun
, vol.2
, pp. 89-94
-
-
Muradov, N.1
-
20
-
-
33750422433
-
The use of carbon catalysts and of nitrous oxide in promoting the conversion of methane
-
Bajus M., Back M.H. The use of carbon catalysts and of nitrous oxide in promoting the conversion of methane. Appl Catal A Gen 1995, 128:61-77.
-
(1995)
Appl Catal A Gen
, vol.128
, pp. 61-77
-
-
Bajus, M.1
Back, M.H.2
-
21
-
-
0344464766
-
Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study
-
Kim M.H., Lee E.K., Jun J.H., Kong S.J., Han G.Y., Lee B.K., et al. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int J Hydrogen Energy 2004, 29:187-193.
-
(2004)
Int J Hydrogen Energy
, vol.29
, pp. 187-193
-
-
Kim, M.H.1
Lee, E.K.2
Jun, J.H.3
Kong, S.J.4
Han, G.Y.5
Lee, B.K.6
-
22
-
-
7644226815
-
Direct hydrocarbon solid oxide fuel cells
-
McIntosh S., Gorte R.J. Direct hydrocarbon solid oxide fuel cells. Chem Rev 2004, 104:4845-4866.
-
(2004)
Chem Rev
, vol.104
, pp. 4845-4866
-
-
McIntosh, S.1
Gorte, R.J.2
-
23
-
-
84869095686
-
Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects
-
Pollet B.G., Staffell I., Shang J.L. Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 2012, 84:235-249.
-
(2012)
Electrochim Acta
, vol.84
, pp. 235-249
-
-
Pollet, B.G.1
Staffell, I.2
Shang, J.L.3
-
25
-
-
77953138921
-
High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation
-
Liu Q., Tian Y., Li H., Jia L., Xia C., Thompson L.T., et al. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation. J Power Sources 2010, 195:6539-6548.
-
(2010)
J Power Sources
, vol.195
, pp. 6539-6548
-
-
Liu, Q.1
Tian, Y.2
Li, H.3
Jia, L.4
Xia, C.5
Thompson, L.T.6
-
26
-
-
4344614768
-
Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst
-
Lee K.K., Han G.Y., Yoon K.J., Lee B.K. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catal Today 2004, 93:81-86.
-
(2004)
Catal Today
, vol.93
, pp. 81-86
-
-
Lee, K.K.1
Han, G.Y.2
Yoon, K.J.3
Lee, B.K.4
-
27
-
-
0035497737
-
Hydrogen via methane decomposition: an application for decarbonization of fossil fuels
-
Muradov N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int J Hydrogen Energy 2001, 26:1165-1175.
-
(2001)
Int J Hydrogen Energy
, vol.26
, pp. 1165-1175
-
-
Muradov, N.1
-
29
-
-
0032207346
-
Exergy analysis of chemical-looping combustion systems
-
Anheden M., Svedberg G. Exergy analysis of chemical-looping combustion systems. Energy Convers Manage 1998, 39:1967-1980.
-
(1998)
Energy Convers Manage
, vol.39
, pp. 1967-1980
-
-
Anheden, M.1
Svedberg, G.2
-
30
-
-
84904996577
-
A hydrogen and oxygen combined cycle with chemical-looping combustion
-
Zhang X., Li S., Hong H., Jin H. A hydrogen and oxygen combined cycle with chemical-looping combustion. Energy Convers Manage 2014, 85:701-708.
-
(2014)
Energy Convers Manage
, vol.85
, pp. 701-708
-
-
Zhang, X.1
Li, S.2
Hong, H.3
Jin, H.4
-
31
-
-
0002063174
-
Reversibility of combustion process
-
In: Gaggioli RA, editor. ACS Symposium Series 235; Washington DC.
-
Ritcher HJ, Knoche KF. Reversibility of combustion process. In: Gaggioli RA, editor. ACS Symposium Series 235; Washington DC. 1983. p. 71-85.
-
(1983)
, pp. 71-85
-
-
Ritcher, H.J.1
Knoche, K.F.2
-
33
-
-
84855336830
-
Progress in chemical-looping combustion and reforming technologies
-
Adanez J., Abad A., Garcia-Labiano F., Gayan P., Luis F. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 2012, 38:215-282.
-
(2012)
Prog Energy Combust Sci
, vol.38
, pp. 215-282
-
-
Adanez, J.1
Abad, A.2
Garcia-Labiano, F.3
Gayan, P.4
Luis, F.5
-
34
-
-
84886950094
-
Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels
-
Arjmand M., Leion H., Mattisson T., Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Appl Energy 2014, 113:1883-1894.
-
(2014)
Appl Energy
, vol.113
, pp. 1883-1894
-
-
Arjmand, M.1
Leion, H.2
Mattisson, T.3
Lyngfelt, A.4
-
35
-
-
84886946242
-
The fate of sulphur in the Cu-based chemical looping with oxygen uncoupling (CLOU) process
-
Adánez-Rubio I., Abad A., Gayán P., García-Labiano F., Luis F., Adánez J. The fate of sulphur in the Cu-based chemical looping with oxygen uncoupling (CLOU) process. Appl Energy 2014, 113:1855-1862.
-
(2014)
Appl Energy
, vol.113
, pp. 1855-1862
-
-
Adánez-Rubio, I.1
Abad, A.2
Gayán, P.3
García-Labiano, F.4
Luis, F.5
Adánez, J.6
-
36
-
-
84928749233
-
Progress in oxygen carrier development of methane-based chemical-looping reforming: a review
-
Tang M., Xu L., Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 2015, 151:143-156.
-
(2015)
Appl Energy
, vol.151
, pp. 143-156
-
-
Tang, M.1
Xu, L.2
Fan, M.3
-
37
-
-
33744923426
-
Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion
-
Rydén M., Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrogen Energy 2006, 31:1271-1283.
-
(2006)
Int J Hydrogen Energy
, vol.31
, pp. 1271-1283
-
-
Rydén, M.1
Lyngfelt, A.2
-
38
-
-
0038816845
-
Applications of chemical-looping combustion with capture of CO2
-
2nd Nordic Minisymposium on CO2 Capture and Storage Göteborg, Sweden.
-
Mattisson T, Lyngfelt A, Applications of chemical-looping combustion with capture of CO2. 2nd Nordic Minisymposium on CO2 Capture and Storage Göteborg, Sweden. 2001.
-
(2001)
-
-
Mattisson, T.1
Lyngfelt, A.2
-
39
-
-
84876460571
-
Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology
-
Rahimpour M.R., Hesami M., Saidi M., Jahanmiri A., Farniaei M., Abbasi M. Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology. Energy Fuels 2013, 27:2351-2362.
-
(2013)
Energy Fuels
, vol.27
, pp. 2351-2362
-
-
Rahimpour, M.R.1
Hesami, M.2
Saidi, M.3
Jahanmiri, A.4
Farniaei, M.5
Abbasi, M.6
-
41
-
-
71749120735
-
Hydrogen production from fossil fuels with carbon dioxide capture, using chemical-looping technologies.
-
PhD Thesis. Sweden: Chalmers University of Technology
-
Rydén M. Hydrogen production from fossil fuels with carbon dioxide capture, using chemical-looping technologies. PhD Thesis. Sweden: Chalmers University of Technology; 2008.
-
(2008)
-
-
Rydén, M.1
-
44
-
-
32644449613
-
Hydrogen membrane separation techniques
-
Adhikari S., Fernando S. Hydrogen membrane separation techniques. Ind Eng Chem Res 2006, 45:875-881.
-
(2006)
Ind Eng Chem Res
, vol.45
, pp. 875-881
-
-
Adhikari, S.1
Fernando, S.2
-
45
-
-
0032684505
-
Performance modelling of a carbon dioxide removal system for power plants
-
Desideri U., Paolucci A. Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manage 1999, 40:1899-1915.
-
(1999)
Energy Convers Manage
, vol.40
, pp. 1899-1915
-
-
Desideri, U.1
Paolucci, A.2
-
46
-
-
0003657757
-
-
Hemisphere Publishing Corporation, New York
-
Szargut J., Morris D.R., Steward F.R. Exergy analysis of thermal, chemical, and metallurgical processes 1987, Hemisphere Publishing Corporation, New York.
-
(1987)
Exergy analysis of thermal, chemical, and metallurgical processes
-
-
Szargut, J.1
Morris, D.R.2
Steward, F.R.3
-
47
-
-
84878657858
-
Energy and exergy analyses of a Zero emission coal system
-
Yan L., He B., Pei X., Li X., Wang C. Energy and exergy analyses of a Zero emission coal system. Energy 2013, 55:1097-1103.
-
(2013)
Energy
, vol.55
, pp. 1097-1103
-
-
Yan, L.1
He, B.2
Pei, X.3
Li, X.4
Wang, C.5
-
48
-
-
84954474668
-
Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system
-
Yan L., Yue G., He B. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system. Energy 2015, 93:1778-1787.
-
(2015)
Energy
, vol.93
, pp. 1778-1787
-
-
Yan, L.1
Yue, G.2
He, B.3
-
49
-
-
0025889205
-
Thermodynamic investigation of hydrogen production by steam-methane reforming
-
Rosen M. Thermodynamic investigation of hydrogen production by steam-methane reforming. Int J Hydrogen Energy 1991, 16:207-217.
-
(1991)
Int J Hydrogen Energy
, vol.16
, pp. 207-217
-
-
Rosen, M.1
-
50
-
-
84856336257
-
Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process
-
Hajjaji N., Pons M.N., Houas A., Renaudin V. Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process. Energy Pol 2012, 42:392-399.
-
(2012)
Energy Pol
, vol.42
, pp. 392-399
-
-
Hajjaji, N.1
Pons, M.N.2
Houas, A.3
Renaudin, V.4
-
51
-
-
9544249411
-
Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes
-
Bargigli S., Raugei M., Ulgiati S. Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes. Energy 2004, 29:2145-2159.
-
(2004)
Energy
, vol.29
, pp. 2145-2159
-
-
Bargigli, S.1
Raugei, M.2
Ulgiati, S.3
|