메뉴 건너뛰기




Volumn 168, Issue , 2016, Pages 1-12

Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production

Author keywords

Chemical looping combustion; Exergy analysis; Hydrogen production; Methane cracking

Indexed keywords

CARBON; CARBON DIOXIDE; CHEMICAL ANALYSIS; COMBUSTION; COMBUSTORS; COMPUTER SOFTWARE; CRACKS; ENERGY EFFICIENCY; EXERGY; HYDROGEN PRODUCTION; METHANE;

EID: 84957039382     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.01.076     Document Type: Article
Times cited : (58)

References (51)
  • 1
    • 36549019525 scopus 로고    scopus 로고
    • Exergy analysis of hydrogen production via steam methane reforming
    • Simpson A.P., Lutz A.E. Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 2007, 32:4811-4820.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 4811-4820
    • Simpson, A.P.1    Lutz, A.E.2
  • 2
    • 84922210686 scopus 로고    scopus 로고
    • 2 production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology
    • 2 production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology. Int J Energy Res 2015, 39:356-369.
    • (2015) Int J Energy Res , vol.39 , pp. 356-369
    • Zhu, L.1    Fan, J.2
  • 3
    • 84918833470 scopus 로고    scopus 로고
    • Catalytic hydrogen production from fossil fuels via the water gas shift reaction
    • Gradisher L., Dutcher B., Fan M. Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl Energy 2015, 139:335-349.
    • (2015) Appl Energy , vol.139 , pp. 335-349
    • Gradisher, L.1    Dutcher, B.2    Fan, M.3
  • 4
    • 84930226481 scopus 로고    scopus 로고
    • Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration
    • Song C., Liu Q., Ji N., Kansha Y., Tsutsumi A. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Appl Energy 2015, 154:392-401.
    • (2015) Appl Energy , vol.154 , pp. 392-401
    • Song, C.1    Liu, Q.2    Ji, N.3    Kansha, Y.4    Tsutsumi, A.5
  • 6
    • 35748978205 scopus 로고    scopus 로고
    • Membranes for hydrogen separation
    • Ockwig N.W., Nenoff T.M. Membranes for hydrogen separation. Chem Rev 2007, 107:4078-4110.
    • (2007) Chem Rev , vol.107 , pp. 4078-4110
    • Ockwig, N.W.1    Nenoff, T.M.2
  • 7
    • 84867405050 scopus 로고    scopus 로고
    • Comparative exergy analysis of sorption enhanced and conventional methane steam reforming
    • Tzanetis K., Martavaltzi C., Lemonidou A. Comparative exergy analysis of sorption enhanced and conventional methane steam reforming. Int J Hydrogen Energy 2012, 37:16308-16320.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 16308-16320
    • Tzanetis, K.1    Martavaltzi, C.2    Lemonidou, A.3
  • 8
    • 84921523008 scopus 로고    scopus 로고
    • Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel
    • Fan J., Zhu L. Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel. Appl Therm Eng 2015, 75:103-114.
    • (2015) Appl Therm Eng , vol.75 , pp. 103-114
    • Fan, J.1    Zhu, L.2
  • 9
    • 31444455231 scopus 로고    scopus 로고
    • Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time
    • Dunker A.M., Kumar S., Mulawa P.A. Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time. Int J Hydrogen Energy 2006, 31:473-484.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 473-484
    • Dunker, A.M.1    Kumar, S.2    Mulawa, P.A.3
  • 11
    • 77955514667 scopus 로고    scopus 로고
    • A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting
    • Rodat S., Abanades S., Sans J.-L., Flamant G. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting. Int J Hydrogen Energy 2010, 35:7748-7758.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 7748-7758
    • Rodat, S.1    Abanades, S.2    Sans, J.-L.3    Flamant, G.4
  • 13
    • 0038580628 scopus 로고    scopus 로고
    • Hydrogen production by direct contact pyrolysis of natural gas
    • Serban M., Lewis M.A., Marshall C.L., Doctor R.D. Hydrogen production by direct contact pyrolysis of natural gas. Energy Fuels 2003, 17:705-713.
    • (2003) Energy Fuels , vol.17 , pp. 705-713
    • Serban, M.1    Lewis, M.A.2    Marshall, C.L.3    Doctor, R.D.4
  • 15
    • 0002953172 scopus 로고    scopus 로고
    • 2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel
    • 2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy Fuels 1998, 12:41-48.
    • (1998) Energy Fuels , vol.12 , pp. 41-48
    • Muradov, N.Z.1
  • 16
    • 0347573855 scopus 로고    scopus 로고
    • Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts
    • Zhang T., Amiridis M.D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl Catal A Gen 1998, 167:161-172.
    • (1998) Appl Catal A Gen , vol.167 , pp. 161-172
    • Zhang, T.1    Amiridis, M.D.2
  • 18
    • 84904800476 scopus 로고    scopus 로고
    • Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports
    • Li X., Zhu G., Qi S., Huang J., Yang B. Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports. Appl Energy 2014, 130:846-852.
    • (2014) Appl Energy , vol.130 , pp. 846-852
    • Li, X.1    Zhu, G.2    Qi, S.3    Huang, J.4    Yang, B.5
  • 19
    • 0142092185 scopus 로고    scopus 로고
    • Catalysis of methane decomposition over elemental carbon
    • Muradov N. Catalysis of methane decomposition over elemental carbon. Catal Commun 2001, 2:89-94.
    • (2001) Catal Commun , vol.2 , pp. 89-94
    • Muradov, N.1
  • 20
    • 33750422433 scopus 로고
    • The use of carbon catalysts and of nitrous oxide in promoting the conversion of methane
    • Bajus M., Back M.H. The use of carbon catalysts and of nitrous oxide in promoting the conversion of methane. Appl Catal A Gen 1995, 128:61-77.
    • (1995) Appl Catal A Gen , vol.128 , pp. 61-77
    • Bajus, M.1    Back, M.H.2
  • 21
    • 0344464766 scopus 로고    scopus 로고
    • Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study
    • Kim M.H., Lee E.K., Jun J.H., Kong S.J., Han G.Y., Lee B.K., et al. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int J Hydrogen Energy 2004, 29:187-193.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 187-193
    • Kim, M.H.1    Lee, E.K.2    Jun, J.H.3    Kong, S.J.4    Han, G.Y.5    Lee, B.K.6
  • 22
    • 7644226815 scopus 로고    scopus 로고
    • Direct hydrocarbon solid oxide fuel cells
    • McIntosh S., Gorte R.J. Direct hydrocarbon solid oxide fuel cells. Chem Rev 2004, 104:4845-4866.
    • (2004) Chem Rev , vol.104 , pp. 4845-4866
    • McIntosh, S.1    Gorte, R.J.2
  • 23
    • 84869095686 scopus 로고    scopus 로고
    • Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects
    • Pollet B.G., Staffell I., Shang J.L. Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 2012, 84:235-249.
    • (2012) Electrochim Acta , vol.84 , pp. 235-249
    • Pollet, B.G.1    Staffell, I.2    Shang, J.L.3
  • 25
    • 77953138921 scopus 로고    scopus 로고
    • High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation
    • Liu Q., Tian Y., Li H., Jia L., Xia C., Thompson L.T., et al. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation. J Power Sources 2010, 195:6539-6548.
    • (2010) J Power Sources , vol.195 , pp. 6539-6548
    • Liu, Q.1    Tian, Y.2    Li, H.3    Jia, L.4    Xia, C.5    Thompson, L.T.6
  • 26
    • 4344614768 scopus 로고    scopus 로고
    • Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst
    • Lee K.K., Han G.Y., Yoon K.J., Lee B.K. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catal Today 2004, 93:81-86.
    • (2004) Catal Today , vol.93 , pp. 81-86
    • Lee, K.K.1    Han, G.Y.2    Yoon, K.J.3    Lee, B.K.4
  • 27
    • 0035497737 scopus 로고    scopus 로고
    • Hydrogen via methane decomposition: an application for decarbonization of fossil fuels
    • Muradov N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int J Hydrogen Energy 2001, 26:1165-1175.
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 1165-1175
    • Muradov, N.1
  • 29
    • 0032207346 scopus 로고    scopus 로고
    • Exergy analysis of chemical-looping combustion systems
    • Anheden M., Svedberg G. Exergy analysis of chemical-looping combustion systems. Energy Convers Manage 1998, 39:1967-1980.
    • (1998) Energy Convers Manage , vol.39 , pp. 1967-1980
    • Anheden, M.1    Svedberg, G.2
  • 30
    • 84904996577 scopus 로고    scopus 로고
    • A hydrogen and oxygen combined cycle with chemical-looping combustion
    • Zhang X., Li S., Hong H., Jin H. A hydrogen and oxygen combined cycle with chemical-looping combustion. Energy Convers Manage 2014, 85:701-708.
    • (2014) Energy Convers Manage , vol.85 , pp. 701-708
    • Zhang, X.1    Li, S.2    Hong, H.3    Jin, H.4
  • 31
    • 0002063174 scopus 로고
    • Reversibility of combustion process
    • In: Gaggioli RA, editor. ACS Symposium Series 235; Washington DC.
    • Ritcher HJ, Knoche KF. Reversibility of combustion process. In: Gaggioli RA, editor. ACS Symposium Series 235; Washington DC. 1983. p. 71-85.
    • (1983) , pp. 71-85
    • Ritcher, H.J.1    Knoche, K.F.2
  • 34
    • 84886950094 scopus 로고    scopus 로고
    • Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels
    • Arjmand M., Leion H., Mattisson T., Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Appl Energy 2014, 113:1883-1894.
    • (2014) Appl Energy , vol.113 , pp. 1883-1894
    • Arjmand, M.1    Leion, H.2    Mattisson, T.3    Lyngfelt, A.4
  • 35
    • 84886946242 scopus 로고    scopus 로고
    • The fate of sulphur in the Cu-based chemical looping with oxygen uncoupling (CLOU) process
    • Adánez-Rubio I., Abad A., Gayán P., García-Labiano F., Luis F., Adánez J. The fate of sulphur in the Cu-based chemical looping with oxygen uncoupling (CLOU) process. Appl Energy 2014, 113:1855-1862.
    • (2014) Appl Energy , vol.113 , pp. 1855-1862
    • Adánez-Rubio, I.1    Abad, A.2    Gayán, P.3    García-Labiano, F.4    Luis, F.5    Adánez, J.6
  • 36
    • 84928749233 scopus 로고    scopus 로고
    • Progress in oxygen carrier development of methane-based chemical-looping reforming: a review
    • Tang M., Xu L., Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 2015, 151:143-156.
    • (2015) Appl Energy , vol.151 , pp. 143-156
    • Tang, M.1    Xu, L.2    Fan, M.3
  • 37
    • 33744923426 scopus 로고    scopus 로고
    • Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion
    • Rydén M., Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrogen Energy 2006, 31:1271-1283.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1271-1283
    • Rydén, M.1    Lyngfelt, A.2
  • 38
    • 0038816845 scopus 로고    scopus 로고
    • Applications of chemical-looping combustion with capture of CO2
    • 2nd Nordic Minisymposium on CO2 Capture and Storage Göteborg, Sweden.
    • Mattisson T, Lyngfelt A, Applications of chemical-looping combustion with capture of CO2. 2nd Nordic Minisymposium on CO2 Capture and Storage Göteborg, Sweden. 2001.
    • (2001)
    • Mattisson, T.1    Lyngfelt, A.2
  • 39
    • 84876460571 scopus 로고    scopus 로고
    • Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology
    • Rahimpour M.R., Hesami M., Saidi M., Jahanmiri A., Farniaei M., Abbasi M. Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology. Energy Fuels 2013, 27:2351-2362.
    • (2013) Energy Fuels , vol.27 , pp. 2351-2362
    • Rahimpour, M.R.1    Hesami, M.2    Saidi, M.3    Jahanmiri, A.4    Farniaei, M.5    Abbasi, M.6
  • 41
    • 71749120735 scopus 로고    scopus 로고
    • Hydrogen production from fossil fuels with carbon dioxide capture, using chemical-looping technologies.
    • PhD Thesis. Sweden: Chalmers University of Technology
    • Rydén M. Hydrogen production from fossil fuels with carbon dioxide capture, using chemical-looping technologies. PhD Thesis. Sweden: Chalmers University of Technology; 2008.
    • (2008)
    • Rydén, M.1
  • 44
    • 32644449613 scopus 로고    scopus 로고
    • Hydrogen membrane separation techniques
    • Adhikari S., Fernando S. Hydrogen membrane separation techniques. Ind Eng Chem Res 2006, 45:875-881.
    • (2006) Ind Eng Chem Res , vol.45 , pp. 875-881
    • Adhikari, S.1    Fernando, S.2
  • 45
    • 0032684505 scopus 로고    scopus 로고
    • Performance modelling of a carbon dioxide removal system for power plants
    • Desideri U., Paolucci A. Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manage 1999, 40:1899-1915.
    • (1999) Energy Convers Manage , vol.40 , pp. 1899-1915
    • Desideri, U.1    Paolucci, A.2
  • 47
    • 84878657858 scopus 로고    scopus 로고
    • Energy and exergy analyses of a Zero emission coal system
    • Yan L., He B., Pei X., Li X., Wang C. Energy and exergy analyses of a Zero emission coal system. Energy 2013, 55:1097-1103.
    • (2013) Energy , vol.55 , pp. 1097-1103
    • Yan, L.1    He, B.2    Pei, X.3    Li, X.4    Wang, C.5
  • 48
    • 84954474668 scopus 로고    scopus 로고
    • Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system
    • Yan L., Yue G., He B. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system. Energy 2015, 93:1778-1787.
    • (2015) Energy , vol.93 , pp. 1778-1787
    • Yan, L.1    Yue, G.2    He, B.3
  • 49
    • 0025889205 scopus 로고
    • Thermodynamic investigation of hydrogen production by steam-methane reforming
    • Rosen M. Thermodynamic investigation of hydrogen production by steam-methane reforming. Int J Hydrogen Energy 1991, 16:207-217.
    • (1991) Int J Hydrogen Energy , vol.16 , pp. 207-217
    • Rosen, M.1
  • 50
    • 84856336257 scopus 로고    scopus 로고
    • Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process
    • Hajjaji N., Pons M.N., Houas A., Renaudin V. Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process. Energy Pol 2012, 42:392-399.
    • (2012) Energy Pol , vol.42 , pp. 392-399
    • Hajjaji, N.1    Pons, M.N.2    Houas, A.3    Renaudin, V.4
  • 51
    • 9544249411 scopus 로고    scopus 로고
    • Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes
    • Bargigli S., Raugei M., Ulgiati S. Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes. Energy 2004, 29:2145-2159.
    • (2004) Energy , vol.29 , pp. 2145-2159
    • Bargigli, S.1    Raugei, M.2    Ulgiati, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.