메뉴 건너뛰기




Volumn 2400, Issue , 2002, Pages 687-690

Solving large sparse lyapunov equations on parallel computers

Author keywords

ADI iteration; Low rank approximation; Lyapunov equations; Sparse linear systems

Indexed keywords

APPROXIMATION THEORY; ITERATIVE METHODS; LINEAR SYSTEMS;

EID: 84956863380     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45706-2_95     Document Type: Conference Paper
Times cited : (7)

References (11)
  • 2
    • 84976855597 scopus 로고
    • Solution of the matrix equation AX + XB = C: Algorithm 432
    • R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432. Comm. ACM, 15:820–826, 1972.
    • (1972) Comm. ACM , vol.15 , pp. 820-826
    • Bartels, R.H.1    Stewart, G.W.2
  • 3
    • 0032644014 scopus 로고    scopus 로고
    • Parallel distributed solvers for large stable generalized Lyapunov equations
    • P. Benner, J.M. Claver, and E.S. Quintana-Ortí. Parallel distributed solvers for large stable generalized Lyapunov equations. Parallel Proc. Lett., 9:147–158, 1999.
    • (1999) Parallel Proc. Lett , vol.9 , pp. 147-158
    • Benner, P.1    Claver, J.M.2    Quintana-Ortí, E.S.3
  • 5
    • 0000567621 scopus 로고
    • Numerical solution of the stable, non-negative definite Lyapunov equation
    • S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal., 2:303–323, 1982.
    • (1982) IMA J. Numer. Anal , vol.2 , pp. 303-323
    • Hammarling, S.J.1
  • 6
    • 0001722652 scopus 로고    scopus 로고
    • Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: Myths and reality
    • G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., 17:870–883, 1997.
    • (1997) SIAM J. Sci. Comput , vol.17 , pp. 870-883
    • Henry, G.1    van de Geijn, R.2
  • 7
    • 0030556718 scopus 로고    scopus 로고
    • Numerical solution of the Lyapunov equation by approximate power iteration
    • A.S. Hodel, B. Tenison, and K.R. Poolla. Numerical solution of the Lyapunov equation by approximate power iteration. Linear Algebra Appl., 236:205–230, 1996.
    • (1996) Linear Algebra Appl , vol.236 , pp. 205-230
    • Hodel, A.S.1    Tenison, B.2    Poolla, K.R.3
  • 9
    • 0001082478 scopus 로고    scopus 로고
    • Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case
    • T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Sys. Control Lett., 40(2):139–144, 2000.
    • (2000) Sys. Control Lett , vol.40 , Issue.2 , pp. 139-144
    • Penzl, T.1
  • 10
    • 0033295674 scopus 로고    scopus 로고
    • A cyclic low rank Smith method for large sparse Lyapunov equations
    • T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput., 21(4):1401–1418, 2000.
    • (2000) SIAM J. Sci. Comput , vol.21 , Issue.4 , pp. 1401-1418
    • Penzl, T.1
  • 11
    • 0019069037 scopus 로고
    • Linear model reduction and solution of the algebraic Riccati equation by use of the sign function
    • J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control, 32:677–687, 1980.
    • (1980) Internat. J. Control , vol.32 , pp. 677-687
    • Roberts, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.