메뉴 건너뛰기




Volumn 1598, Issue , 1999, Pages 120-134

Genetic programming discovers efficient learning rules for the hidden and output layers of feedforward neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION ALGORITHMS; FEEDFORWARD NEURAL NETWORKS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; MACHINE LEARNING; MULTILAYER NEURAL NETWORKS;

EID: 84956857243     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-48885-5_10     Document Type: Conference Paper
Times cited : (9)

References (57)
  • 2
    • 0029183826 scopus 로고
    • Gradient learning algorithm overview: A general dynamical systems perspective
    • Jan
    • Pierre Baldi. Gradient learning algorithm overview: A general dynamical systems perspective. IEEE Transactions on Neural Networks, 6(1):182-195, Jan 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.1 , pp. 182-195
    • Baldi, P.1
  • 4
    • 0001793307 scopus 로고
    • The evolution of learning: An experiment in genetic connectionism
    • San Mateo, CA
    • D. J. Chalmers. The evolution of learning: An experiment in genetic connectionism. In Connectionist Models Summer School. San Mateo, CA., 1990.
    • (1990) Connectionist Models Summer School
    • Chalmers, D.J.1
  • 5
    • 0031127257 scopus 로고    scopus 로고
    • Chen. Efficient backpropagation learning using optimal learning rate and momentum
    • X-H Yu G-A Chen. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks, 10(3):517-527, 1997.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 517-527
    • X-H Yu, G.-A.1
  • 6
    • 0031625049 scopus 로고    scopus 로고
    • Regularization effect of weight initialization in back propagation networks
    • Anchorage, Alaska, IEEE, May
    • Vladimir Cherkassky and Robert Shepherd. Regularization effect of weight initialization in back propagation networks. In 1998 IEEE International J. Conference of Neural Networks (IJCNN’98), Anchorage, Alaska, pages 2258-2261. IEEE, May 1998.
    • (1998) 1998 IEEE International J. Conference of Neural Networks (IJCNN’98) , pp. 2258-2261
    • Cherkassky, V.1    Shepherd, R.2
  • 7
    • 0031127591 scopus 로고    scopus 로고
    • Two strategies to avoid overfitting in feedforward neural networks
    • C Schittenkopf G Deco and W Brauer. Two strategies to avoid overfitting in feedforward neural networks. Neural Networks, 10(3):505-516, 1997.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 505-516
    • Schittenkopf G Deco, C.1    Brauer, W.2
  • 9
    • 84956866569 scopus 로고
    • Improving the convergence of the back propagation algorithm
    • A. Harry Eaton and L. Tracy Oliver. Improving the convergence of the back propagation algorithm. Neural Networks, 5:283-288, 1992.
    • (1992) Neural Networks , vol.5 , pp. 283-288
    • Harry Eaton, A.1    Tracy Oliver, L.2
  • 11
    • 0026745182 scopus 로고
    • On the problem of local minima in backpropagation
    • M. Gori and A. Tesi. On the problem of local minima in backpropagation. IEEE Transactions on PAMI, 14(1):76-86, 1992.
    • (1992) IEEE Transactions on PAMI , vol.14 , Issue.1 , pp. 76-86
    • Gori, M.1    Tesi, A.2
  • 12
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R. P. Gorman and T.J Sejnowski. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1:75-89, 1988.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 15
    • 0025964567 scopus 로고
    • Back propagation algorithm which varies the number of hidden units
    • Yoshio Hirose, Koichi Yamashit, and Shimpei Hijiya. Back propagation algorithm which varies the number of hidden units. Neural Networks, 4:61-66, 1991.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashit, K.2    Hijiya, S.3
  • 17
    • 0025703365 scopus 로고
    • Convergence of back-propagation in neural networks using a log-likelihood cost function
    • M. J. J. Holt and S. Semnani. Convergence of back-propagation in neural networks using a log-likelihood cost function. Electronics Letters, 26(23):1964-1965, 1990.
    • (1990) Electronics Letters , vol.26 , Issue.23 , pp. 1964-1965
    • Holt, M.1    Semnani, S.2
  • 18
    • 0024137490 scopus 로고
    • Jacobs. Increased rates of convergence through learning rate adaptation
    • Robert A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:295-307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Robert, A.1
  • 20
    • 0001008973 scopus 로고
    • Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithms
    • H. Kitano. Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms. Physica D, 75:225-238, 1994.
    • (1994) Physica D , vol.75 , pp. 225-238
    • Kitano, H.1
  • 23
    • 0025889440 scopus 로고
    • Benefits of gain: Speeded learning and minimal hidden layers in back propagation networks
    • John K. Kruschke and Javier R. Movellan. Benefits of gain: Speeded learning and minimal hidden layers in back propagation networks. IEEE Transactions on Systems, Man and Cybernetics., 21(1), 1991.
    • (1991) IEEE Transactions on Systems, Man and Cybernetics , vol.21 , Issue.1
    • Kruschke, J.K.1    Movellan, J.R.2
  • 24
    • 0027242809 scopus 로고
    • Lengelle. Initializing back propagation networks using prototypes
    • T Denoeux R Lengelle. Initializing back propagation networks using prototypes. Neural Networks, 6(3):351-363, 1993.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 351-363
    • T Denoeux, R.1
  • 26
    • 0003346575 scopus 로고
    • From basic network principles to neural architecture: Emergence of spatial-opponent cells
    • R. Linsker. From basic network principles to neural architecture: Emergence of spatial-opponent cells. In Proceedings of the National Acedemy of Science USA, volume 83, pages 7508-7512, 1986.
    • (1986) Proceedings of the National Acedemy of Science USA , vol.83 , pp. 7508-7512
    • Linsker, R.1
  • 27
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialisation of connections
    • F. A. lodewykWessels and Etienne Barnard. Avoiding false local minima by proper initialisation of connections. IEEE Transactions on Neural Networks, 3(6):899-905, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 899-905
    • Lodewykwessels, F.A.1    Barnard, E.2
  • 28
    • 0003593041 scopus 로고    scopus 로고
    • PWS Publishing Company, Boston, MA 02116, 96
    • Howard Demuth Martin Hagan and Mark Beale. Neural Network Design. PWS Publishing Company, Boston, MA 02116, 96.
    • Neural Network Design
    • Hagan, H.D.M.M.B.1
  • 29
    • 0027698884 scopus 로고
    • An impproved algorithm for neural network classification of imbalanced training sets
    • Rangachari Anand, Kishan Mehrotra, Chilukuri Mohan and Sanjay Ranka. An impproved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6):962-969, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.6 , pp. 962-969
    • Anand, R.1    Mehrotra, K.2    Mohan, C.3    Ranka, S.4
  • 30
    • 0027205884 scopus 로고
    • Moller. A scaled conjugate gradient algorithm for fast supervised learning
    • Martin F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Martin, F.1
  • 32
  • 33
    • 0026711368 scopus 로고
    • Improving the convergence of the back propagation algorithm
    • A. Van Ooyen and B Nienhuis. Improving the convergence of the back propagation algorithm. Neural Networks, 5:465-471, 1992.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • van Ooyen, A.1    Nienhuis, B.2
  • 35
    • 0029403658 scopus 로고
    • An efficient constrained training algorithm for feedforward networks
    • S. J. Perantonis and D. A. Karras. An efficient constrained training algorithm for feedforward networks. IEEE Transactions on Neural Networks, 6(6):237-149, Nov 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 149-237
    • Perantonis, S.J.1    Karras, D.A.2
  • 36
    • 67650687884 scopus 로고    scopus 로고
    • Efficient evolution of asymmetric recurrent neural networks using a pdgp-inspired two-dimensional representation
    • Paris, Springer Lectre Notes in Computer Science
    • J. Pujol and R. Poli. Efficient evolution of asymmetric recurrent neural networks using a pdgp-inspired two-dimensional representation. In the First European Workshop on Genetic Programming(EUROGP’98), Paris, Springer Lectre Notes in Computer Science, volume 1391, pages 130-141, 1998.
    • (1998) The First European Workshop on Genetic Programming(Eurogp’98) , vol.1391 , pp. 130-141
    • Pujol, J.1    Poli, R.2
  • 37
    • 0031647673 scopus 로고    scopus 로고
    • Evolving neural networks using a dual representation with a combined crossover operator
    • Anchorage, Alaska
    • J. Pujol and R. Poli. Evolving neural networks using a dual representation with a combined crossover operator. In the IEEE International Conference on Evolutionary Computation (ICEC’98), Anchorage, Alaska, pages 416-421, 1998.
    • (1998) The IEEE International Conference on Evolutionary Computation (ICEC’98) , pp. 416-421
    • Pujol, J.1    Poli, R.2
  • 40
    • 0007849243 scopus 로고    scopus 로고
    • Genetic programming can discover fast and general learning rules for neural networks
    • Madison, Wisconsin, Morgan Kaufmann, July
    • Amr Radi and Riccardo Poli. Genetic programming can discover fast and general learning rules for neural networks. In Third Annual Genetic Programming Conference (GP’98), Madison, Wisconsin, pages 314-323. Morgan Kaufmann, July 1998.
    • (1998) Third Annual Genetic Programming Conference (GP’98) , pp. 314-323
    • Radi, A.1    Poli, R.2
  • 41
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons from backpropagation to adaptive learning algorithms
    • Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons from backpropagation to adaptive learning algorithms. Computer Standards and Interfaces Special Issue on Neural Networks, 16(3):265-275, 1994.
    • (1994) Computer Standards and Interfaces Special Issue on Neural Networks , vol.16 , Issue.3 , pp. 265-275
    • Riedmiller, M.1
  • 44
    • 84976832431 scopus 로고
    • Methods to speed up error back propagation learning algorithm
    • Dilip Sarkar. Methods to speed up error back propagation learning algorithm. ACM Computing Surveys, 27(4):519-542, 1995.
    • (1995) ACM Computing Surveys , vol.27 , Issue.4 , pp. 519-542
    • Sarkar, D.1
  • 46
    • 0002824981 scopus 로고
    • Advanced Neural Computers, Elsevier Science Publishers B.V. (North-Holland
    • Femando F. Silva and Luis B. Almeida. Speeding Backpropagation, pages 151-158. Advanced Neural Computers, Elsevier Science Publishers B.V. (North-Holland), 1990.
    • (1990) Speeding Backpropagation , pp. 151-158
    • Silva, F.F.1    Almeida, L.B.2
  • 47
    • 0001336749 scopus 로고
    • Accelerated learning in layered neural networks
    • Sara A. Solla, Esther Levin, and Michael Fleisher. Accelerated learning in layered neural networks. Complex System, 2:625-640, 1988.
    • (1988) Complex System , vol.2 , pp. 625-640
    • Solla, S.A.1    Levin, E.2    Fleisher, M.3
  • 48
    • 0027313792 scopus 로고
    • Speed up learning and network optimization with extended back propagation
    • Alessandro Sperduti and Antonina Starita. Speed up learning and network optimization with extended back propagation. Neural Networks, 6:365-383, 1993.
    • (1993) Neural Networks , vol.6 , pp. 365-383
    • Sperduti, A.1    Starita, A.2
  • 49
    • 0029032234 scopus 로고
    • The generalized proportional-integral-derivative (Pid)gradient descent back propagation algorithm
    • Ramana Vitthal P. Sunthar and Ch.Durgaprasada Rao. The generalized proportional-integral-derivative (pid)gradient descent back propagation algorithm. Neural Networks, 8(4):563-569, 1995.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 563-569
    • Sunthar, R.V.P.1    Rao, C.D.2
  • 51
    • 0025593679 scopus 로고
    • Super SUB:Fast adaptive back propagation with good scaling properties
    • Tom Tollenaere. Super SUB:Fast adaptive back propagation with good scaling properties. Neural Networks, 1:561-573, 1990.
    • (1990) Neural Networks , vol.1 , pp. 561-573
    • Tollenaere, T.1
  • 52
    • 34250094997 scopus 로고
    • Accelerating the convergence of the backpropagation method
    • Sept
    • W.T Zink, T.P Vogl, J.K. Zigler and D.L Alkon. Accelerating the convergence of the backpropagation method. Biological Cybernetics, 59:256-264, Sept. 1988.
    • (1988) Biological Cybernetics , vol.59 , pp. 256-264
    • Zink, W.T.1    Vogl, T.P.2    Zigler, J.K.3    Alkon, D.L.4
  • 53
    • 0025724253 scopus 로고
    • Weir. A method for self determination of adaptive learning rate in back propagation
    • Michael K. Weir. A method for self determination of adaptive learning rate in back propagation. Neural Networks, 4:(371-379), 1991.
    • (1991) Neural Networks , vol.4 , pp. 371-379
    • Michael, K.1
  • 54
    • 0001376805 scopus 로고
    • Optimizing neural networks using faster, more accurate genetic search
    • J. D. Schaffer, editor, Georg Mason University, Morgan Kaufmann
    • D. Whitley and T. Hanson. Optimizing neural networks using faster, more accurate genetic search. In J. D. Schaffer, editor, Third International Conference on Genetic Algorithms, Georg Mason University, pages 391-396. Morgan Kaufmann, 1989.
    • (1989) Third International Conference on Genetic Algorithms , pp. 391-396
    • Whitley, D.1    Hanson, T.2
  • 57
    • 0028389647 scopus 로고
    • Accelerated learning by active example selection
    • Byoung-Tak Zhang. Accelerated learning by active example selection. International Journal of Neural Systems, 5(1):67-75, 1994.
    • (1994) International Journal of Neural Systems , vol.5 , Issue.1 , pp. 67-75
    • Zhang, B.-T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.