-
1
-
-
0009346188
-
Practical zero-knowledge proofs: Giving hints and using deficiencies
-
J. Boyar, K. Friedl and C. Lund, Practical zero-knowledge proofs: giving hints and using deficiencies, Journal of Cryptology, 4(3):185-206, 1991.
-
(1991)
Journal of Cryptology
, vol.4
, Issue.3
, pp. 185-206
-
-
Boyar, J.1
Friedl, K.2
Lund, C.3
-
2
-
-
84957366640
-
Rapid Demonstration of Linear Relations Connected by Boolean Operators
-
S. Brands, “Rapid Demonstration of Linear Relations Connected by Boolean Operators”, Proceedings of Eurocrypt’97, LNCS 1223, pp. 318-333.
-
Proceedings of Eurocrypt’97
, pp. 318-333
-
-
Brands, S.1
-
3
-
-
0011390710
-
Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes
-
J. Camenisch and M. Michels, “Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes”, Proceedings of Eurocrypt’99, LNCS 1592, pp. 106–121. Also appeared as BRICS Technical Report RS-98-29.
-
Proceedings of Eurocrypt’99
, pp. 106-121
-
-
Camenisch, J.1
Michels, M.2
-
4
-
-
84958612917
-
Efficient group signature schemes for large groups
-
J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups”, Proceedings of CRYPTO’97, LNCS 1294, pages 410-424.
-
Proceedings of CRYPTO’97
, pp. 410-424
-
-
Camenisch, J.1
Stadler, M.2
-
6
-
-
84957680703
-
Zero-knowledge for Finite Field Arithmetic or: Can Zero-knowledge be for Free?
-
R.Cramer and I. Damgard, “Zero-knowledge for Finite Field Arithmetic or: Can Zero-knowledge be for Free?”, In Proceedings of CRYPTO’98, LNCS 1462, pp. 424–441, 1998.
-
(1998)
Proceedings of CRYPTO’98
, pp. 424-441
-
-
Cramer, R.1
Damgard, I.2
-
7
-
-
85016672373
-
Proofs of partial knowledge and simplified design of witness hiding protocols
-
R.Cramer, I.Damgard and B.Schoenmakers, Crypto’94, “Proofs of partial knowledge and simplified design of witness hiding protocols”, Proceedings of CRYPTO’94, LNCS 839, pp.174-187.
-
Proceedings of CRYPTO’94
, pp. 174-187
-
-
Cramer, R.1
Damgard, I.2
Schoenmakers, B.3
-
10
-
-
84958615646
-
Statistical zero-knowledge protocols to prove modular polynomial relation
-
E. Fujisaki and T. Okamoto, “Statistical zero-knowledge protocols to prove modular polynomial relation”, Proceedings of CRYPTO’97, LNCS 1294, pp. 16-30.
-
Proceedings of CRYPTO’97
, pp. 16-30
-
-
Fujisaki, E.1
Okamoto, T.2
-
11
-
-
85066565024
-
-
An efficient divisible electronic cash scheme
-
T. Okamoto An efficient divisible electronic cash scheme, Proceedings of CRYPTO’95, LNCS, pp. 439-451.
-
Proceedings of CRYPTO’95
, pp. 439-451
-
-
Okamoto, T.1
-
12
-
-
85028761718
-
Peralta, “A simple and secure way to show the validity of your public key”, Proceedings of CRYPTO’87
-
J. van de Graaf and R. Peralta, “A simple and secure way to show the validity of your public key”, Proceedings of CRYPTO’87, LNCS 293, pp. 128-134. 208
-
LNCS 293, Pp
, vol.128
, pp. 208
-
-
Van De Graaf, J.1
-
13
-
-
84958670348
-
RSA-based undeniable signatures
-
R. Gennaro, H. Krawczyk and T. Rabin, “RSA-based undeniable signatures”, Proceedings of CRYPTO’97, LNCS 1294, pp. 132-149. 208, 208
-
(1994)
Proceedings of CRYPTO’97, LNCS
, vol.208
, Issue.208
, pp. 132-149
-
-
Gennaro, R.1
Krawczyk, H.2
Rabin, T.3
-
14
-
-
84947441722
-
Robust and efficient sharing of RSA functions
-
R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, “Robust and efficient sharing of RSA functions”, Proceedings of CRYPTO’96, LNCS 1109, pp. 157-172. 208, 208
-
(1999)
Proceedings of CRYPTO’96, LNCS
, vol.208
, Issue.208
, pp. 157-172
-
-
Gennaro, R.1
Jarecki, S.2
Krawczyk, H.3
Rabin, T.4
-
15
-
-
85086950477
-
New public-key schemes based on elliptic curves over the ring Zn
-
K.Koyama, U. Maurer, T. Okamoto and S. Vanstone
-
n”, Proceedings of CRYPTO’91, pp.252-266 208
-
Proceedings of CRYPTO’91, Pp
, vol.252
, pp. 208
-
-
-
16
-
-
0032218232
-
D. Micciancio and T
-
R. Gennaro, D. Micciancio and T. Rabin, “An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products”, in Proceedings of 5rd ACM conference on Computer and Communication Security, 1998. 208, 214, 216
-
(1998)
Rabin, “An Efficient Non-Interactive Statistical Zero-Knowledge Proof System for Quasi-Safe Prime products”, in Proceedings of 5Rd ACM Conference on Computer and Communication Security
, vol.208
, Issue.214
, pp. 216
-
-
Gennaro, R.1
|