메뉴 건너뛰기




Volumn 1716, Issue , 1999, Pages 208-218

how to prove that a committed number is prime

Author keywords

[No Author keywords available]

Indexed keywords

SECURITY OF DATA;

EID: 84956853783     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-48000-6_17     Document Type: Conference Paper
Times cited : (6)

References (17)
  • 1
    • 0009346188 scopus 로고
    • Practical zero-knowledge proofs: Giving hints and using deficiencies
    • J. Boyar, K. Friedl and C. Lund, Practical zero-knowledge proofs: giving hints and using deficiencies, Journal of Cryptology, 4(3):185-206, 1991.
    • (1991) Journal of Cryptology , vol.4 , Issue.3 , pp. 185-206
    • Boyar, J.1    Friedl, K.2    Lund, C.3
  • 2
    • 84957366640 scopus 로고    scopus 로고
    • Rapid Demonstration of Linear Relations Connected by Boolean Operators
    • S. Brands, “Rapid Demonstration of Linear Relations Connected by Boolean Operators”, Proceedings of Eurocrypt’97, LNCS 1223, pp. 318-333.
    • Proceedings of Eurocrypt’97 , pp. 318-333
    • Brands, S.1
  • 3
    • 0011390710 scopus 로고    scopus 로고
    • Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes
    • J. Camenisch and M. Michels, “Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes”, Proceedings of Eurocrypt’99, LNCS 1592, pp. 106–121. Also appeared as BRICS Technical Report RS-98-29.
    • Proceedings of Eurocrypt’99 , pp. 106-121
    • Camenisch, J.1    Michels, M.2
  • 4
    • 84958612917 scopus 로고    scopus 로고
    • Efficient group signature schemes for large groups
    • J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups”, Proceedings of CRYPTO’97, LNCS 1294, pages 410-424.
    • Proceedings of CRYPTO’97 , pp. 410-424
    • Camenisch, J.1    Stadler, M.2
  • 6
    • 84957680703 scopus 로고    scopus 로고
    • Zero-knowledge for Finite Field Arithmetic or: Can Zero-knowledge be for Free?
    • Text Box: 24t 24t i+3t = i 24t! (24t − i) … (24t − 3t − i) (3t+i)!(24t−3t−t)! = 24t!. (3t + i)…i i!(24t−i)! R.Cramer and I. Damgard, “Zero-knowledge for Finite Field Arithmetic or: Can Zero-knowledge be for Free?”, In Proceedings of CRYPTO’98, LNCS 1462, pp. 424–441, 1998.
    • (1998) Proceedings of CRYPTO’98 , pp. 424-441
    • Cramer, R.1    Damgard, I.2
  • 7
    • 85016672373 scopus 로고    scopus 로고
    • Proofs of partial knowledge and simplified design of witness hiding protocols
    • R.Cramer, I.Damgard and B.Schoenmakers, Crypto’94, “Proofs of partial knowledge and simplified design of witness hiding protocols”, Proceedings of CRYPTO’94, LNCS 839, pp.174-187.
    • Proceedings of CRYPTO’94 , pp. 174-187
    • Cramer, R.1    Damgard, I.2    Schoenmakers, B.3
  • 10
    • 84958615646 scopus 로고    scopus 로고
    • Statistical zero-knowledge protocols to prove modular polynomial relation
    • E. Fujisaki and T. Okamoto, “Statistical zero-knowledge protocols to prove modular polynomial relation”, Proceedings of CRYPTO’97, LNCS 1294, pp. 16-30.
    • Proceedings of CRYPTO’97 , pp. 16-30
    • Fujisaki, E.1    Okamoto, T.2
  • 11
    • 85066565024 scopus 로고    scopus 로고
    • An efficient divisible electronic cash scheme
    • T. Okamoto An efficient divisible electronic cash scheme, Proceedings of CRYPTO’95, LNCS, pp. 439-451.
    • Proceedings of CRYPTO’95 , pp. 439-451
    • Okamoto, T.1
  • 12
    • 85028761718 scopus 로고    scopus 로고
    • Peralta, “A simple and secure way to show the validity of your public key”, Proceedings of CRYPTO’87
    • J. van de Graaf and R. Peralta, “A simple and secure way to show the validity of your public key”, Proceedings of CRYPTO’87, LNCS 293, pp. 128-134. 208
    • LNCS 293, Pp , vol.128 , pp. 208
    • Van De Graaf, J.1
  • 15
    • 85086950477 scopus 로고    scopus 로고
    • New public-key schemes based on elliptic curves over the ring Zn
    • K.Koyama, U. Maurer, T. Okamoto and S. Vanstone
    • n”, Proceedings of CRYPTO’91, pp.252-266 208
    • Proceedings of CRYPTO’91, Pp , vol.252 , pp. 208


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.