메뉴 건너뛰기




Volumn 21, Issue 6, 2016, Pages 486-497

Mannitol in Plants, Fungi, and Plant–Fungal Interactions

Author keywords

antioxidant; leaderless protein secretion; mannitol metabolism; Plant pathogen interaction; reactive oxygen

Indexed keywords

MANNITOL; MANNITOL DEHYDROGENASE; REACTIVE OXYGEN METABOLITE;

EID: 84956648916     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.01.006     Document Type: Review
Times cited : (146)

References (95)
  • 1
    • 84979315537 scopus 로고
    • Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism
    • 1 Lewis, D., Smith, D., Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol. 66 (1967), 143–184.
    • (1967) New Phytol. , vol.66 , pp. 143-184
    • Lewis, D.1    Smith, D.2
  • 2
    • 0001737876 scopus 로고    scopus 로고
    • Mannitol metabolism in plants: a method for coping with stress
    • 2 Stoop, J.M.H., et al. Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci. 1 (1996), 139–144.
    • (1996) Trends Plant Sci. , vol.1 , pp. 139-144
    • Stoop, J.M.H.1
  • 3
    • 0001704090 scopus 로고    scopus 로고
    • Regulation of sugar alcohol biosynthesis
    • R.C. Leegood et al. (eds.) Kluwer Academic
    • 3 Loescher, W.H., Everard, J.D., Regulation of sugar alcohol biosynthesis. Leegood, R.C., et al. (eds.) Photosynthesis: Physiology and Metabolism, 2000, Kluwer Academic, 275–299.
    • (2000) Photosynthesis: Physiology and Metabolism , pp. 275-299
    • Loescher, W.H.1    Everard, J.D.2
  • 4
    • 0036273133 scopus 로고    scopus 로고
    • Sugar alcohols, salt stress, and fungal resistance: polyols- multifunctional plant protection
    • 4 Williamson, J.D., et al. Sugar alcohols, salt stress, and fungal resistance: polyols- multifunctional plant protection. J. Am. Soc. Hort. Sci. 127 (2002), 467–473.
    • (2002) J. Am. Soc. Hort. Sci. , vol.127 , pp. 467-473
    • Williamson, J.D.1
  • 5
    • 10044228161 scopus 로고    scopus 로고
    • Salt tolerance and salinity effects on plants: a review
    • 5 Parida, A., Das, A., Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 (2005), 324–349.
    • (2005) Ecotoxicol. Environ. Saf. , vol.60 , pp. 324-349
    • Parida, A.1    Das, A.2
  • 6
    • 41749108644 scopus 로고    scopus 로고
    • Salt stress and phyto-biochemical responses of plants – a review
    • 6 Parvaiz, A., Satyawati, S., Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ. 54 (2008), 89–99.
    • (2008) Plant Soil Environ. , vol.54 , pp. 89-99
    • Parvaiz, A.1    Satyawati, S.2
  • 7
    • 79958768625 scopus 로고    scopus 로고
    • Enhanced salt stress tolerance in transgenic potato plants
    • 7 Rahnama, H., et al. Enhanced salt stress tolerance in transgenic potato plants. Acta Physiol. Plant 33 (2011), 1521–1532.
    • (2011) Acta Physiol. Plant , vol.33 , pp. 1521-1532
    • Rahnama, H.1
  • 8
    • 0030807647 scopus 로고    scopus 로고
    • Salinity and drought tolerance of mannitol-accumulating transgenic tobacco
    • 8 Karakas, B., et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ. 20 (1997), 609–616.
    • (1997) Plant Cell Environ. , vol.20 , pp. 609-616
    • Karakas, B.1
  • 9
    • 0015406621 scopus 로고
    • Water relations of sugar-tolerant yeasts: the role of intracellular polyol
    • 9 Brown, A., Simpson, J., Water relations of sugar-tolerant yeasts: the role of intracellular polyol. J. Gen. Microbiol. 72 (1972), 589–591.
    • (1972) J. Gen. Microbiol. , vol.72 , pp. 589-591
    • Brown, A.1    Simpson, J.2
  • 10
    • 0017031867 scopus 로고
    • Microbial water stress
    • 10 Brown, A., Microbial water stress. Bacteriol. Rev. 40 (1976), 803–846.
    • (1976) Bacteriol. Rev. , vol.40 , pp. 803-846
    • Brown, A.1
  • 11
    • 0020336190 scopus 로고
    • Living with water stress: evolution of osmolyte systems
    • 11 Yancey, P., et al. Living with water stress: evolution of osmolyte systems. Science 24 (1982), 1214–1222.
    • (1982) Science , vol.24 , pp. 1214-1222
    • Yancey, P.1
  • 12
    • 24644450812 scopus 로고    scopus 로고
    • Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
    • 12 Yancey, P., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208 (2005), 2819–2830.
    • (2005) J. Exp. Biol. , vol.208 , pp. 2819-2830
    • Yancey, P.1
  • 13
    • 84946202197 scopus 로고    scopus 로고
    • Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms
    • 13 Yancey, P., Siebenaller, J., Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218 (2015), 1880–1896.
    • (2015) J. Exp. Biol. , vol.218 , pp. 1880-1896
    • Yancey, P.1    Siebenaller, J.2
  • 14
    • 77956178864 scopus 로고    scopus 로고
    • Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development
    • 14 Bernstein, N., et al. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic. Biol. Med. 49 (2010), 1161–1171.
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1161-1171
    • Bernstein, N.1
  • 15
    • 34447108280 scopus 로고    scopus 로고
    • Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance
    • 15 Leshem, Y., et al. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51 (2007), 185–197.
    • (2007) Plant J. , vol.51 , pp. 185-197
    • Leshem, Y.1
  • 16
    • 0034045986 scopus 로고    scopus 로고
    • Dual action of the active oxygen species during plant stress responses
    • 16 Dat, J., et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57 (2000), 779–795.
    • (2000) Cell. Mol. Life Sci. , vol.57 , pp. 779-795
    • Dat, J.1
  • 17
    • 45249125699 scopus 로고
    • Hydroxyl radical scavenging activity of compatible solutes
    • 17 Smirnoff, N., Cumbes, Q., Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28 (1989), 1057–1060.
    • (1989) Phytochemistry , vol.28 , pp. 1057-1060
    • Smirnoff, N.1    Cumbes, Q.2
  • 18
    • 0031401180 scopus 로고    scopus 로고
    • Mannitol protects against oxidation by hydroxyl radicals
    • 18 Shen, B., et al. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115 (1997), 527–532.
    • (1997) Plant Physiol. , vol.115 , pp. 527-532
    • Shen, B.1
  • 19
    • 0031127904 scopus 로고    scopus 로고
    • Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
    • 19 Shen, B., et al. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113 (1997), 1177–1183.
    • (1997) Plant Physiol. , vol.113 , pp. 1177-1183
    • Shen, B.1
  • 20
    • 0031396755 scopus 로고    scopus 로고
    • 2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley
    • 2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley. Plant Physiol. 115 (1997), 241–248.
    • (1997) Plant Physiol. , vol.115 , pp. 241-248
    • Moore, B.1
  • 21
    • 84918833988 scopus 로고
    • Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ([Formula presented]) in aqueous solution
    • 21 Buxton, G., et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ([Formula presented]) in aqueous solution. J. Phys. Chem. Ref. Data 17 (1988), 513–886.
    • (1988) J. Phys. Chem. Ref. Data , vol.17 , pp. 513-886
    • Buxton, G.1
  • 22
    • 0026552614 scopus 로고
    • Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol
    • 22 Tarczynski, M., et al. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 2600–2604.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 2600-2604
    • Tarczynski, M.1
  • 23
    • 0027464813 scopus 로고
    • Stress protection of transgenic tobacco by production of the osmolyte mannitol
    • 23 Tarczynski, M., et al. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259 (1993), 508–510.
    • (1993) Science , vol.259 , pp. 508-510
    • Tarczynski, M.1
  • 24
    • 0027209389 scopus 로고
    • Strategies of antioxidant defense
    • 24 Sies, H., Strategies of antioxidant defense. Eur. J. Biochem. 215 (1993), 213–219.
    • (1993) Eur. J. Biochem. , vol.215 , pp. 213-219
    • Sies, H.1
  • 25
    • 0030894162 scopus 로고    scopus 로고
    • Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress: oxidants and antioxidants
    • 25 Sies, H., Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress: oxidants and antioxidants. Exp. Physiol. 82 (1997), 291–295.
    • (1997) Exp. Physiol. , vol.82 , pp. 291-295
    • Sies, H.1
  • 26
    • 84949408715 scopus 로고
    • On the use of the use of [Formula presented] scavengers in biological systems
    • 26 Czapski, G., On the use of the use of [Formula presented] scavengers in biological systems. Isr. J. Chem. 24 (1984), 29–32.
    • (1984) Isr. J. Chem. , vol.24 , pp. 29-32
    • Czapski, G.1
  • 27
    • 12844278044 scopus 로고    scopus 로고
    • The oxidative environment and protein damage
    • 27 Davies, M.J., The oxidative environment and protein damage. Biochim. Biophys. Acta 1703 (2005), 93–109.
    • (2005) Biochim. Biophys. Acta , vol.1703 , pp. 93-109
    • Davies, M.J.1
  • 28
    • 34249776327 scopus 로고    scopus 로고
    • Decoding the mannitol enigma in filamentous fungi
    • 28 Solomon, P., et al. Decoding the mannitol enigma in filamentous fungi. Trends Microbiol. 15 (2007), 257–262.
    • (2007) Trends Microbiol. , vol.15 , pp. 257-262
    • Solomon, P.1
  • 29
    • 0017850486 scopus 로고
    • Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata
    • 29 Hult, K., Gatenbeck, S., Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur. J. Biochem. 88 (1978), 607–612.
    • (1978) Eur. J. Biochem. , vol.88 , pp. 607-612
    • Hult, K.1    Gatenbeck, S.2
  • 30
    • 0014478209 scopus 로고
    • D-mannitol metabolism by Aspergillus candidus
    • 30 Strandberg, G., D-mannitol metabolism by Aspergillus candidus. J. Bacteriol. 97 (1969), 1305–1309.
    • (1969) J. Bacteriol. , vol.97 , pp. 1305-1309
    • Strandberg, G.1
  • 31
    • 0015264029 scopus 로고
    • Mannitol biosynthesis in Sclerotinia sclerotiorum
    • 31 Wang, S., Torrneau, D., Mannitol biosynthesis in Sclerotinia sclerotiorum. Arch. Mikrobiol. 81 (1972), 91–99.
    • (1972) Arch. Mikrobiol. , vol.81 , pp. 91-99
    • Wang, S.1    Torrneau, D.2
  • 32
    • 77956806246 scopus 로고    scopus 로고
    • Spatial and developmental differentiation of mannitol dehydrogenase and mannitol 1-phosphate dehydrogenase in Aspergillus niger
    • 32 Aguilar-Osorio, G., et al. Spatial and developmental differentiation of mannitol dehydrogenase and mannitol 1-phosphate dehydrogenase in Aspergillus niger. Eukaryot. Cell 9 (2010), 1398–1402.
    • (2010) Eukaryot. Cell , vol.9 , pp. 1398-1402
    • Aguilar-Osorio, G.1
  • 33
    • 77952784465 scopus 로고    scopus 로고
    • Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea
    • 33 Dulermo, T., et al. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochem. J. 427 (2010), 323–332.
    • (2010) Biochem. J. , vol.427 , pp. 323-332
    • Dulermo, T.1
  • 34
    • 12444262360 scopus 로고    scopus 로고
    • Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
    • 34 Solomon, P., et al. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Mol. Plant Microbe Interact. 18 (2005), 110–115.
    • (2005) Mol. Plant Microbe Interact. , vol.18 , pp. 110-115
    • Solomon, P.1
  • 35
    • 33847299514 scopus 로고    scopus 로고
    • Mannitol metabolism in the phytopathogenic fungus Alternaria alternata
    • 35 Vélëz, H., et al. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 44 (2007), 258–268.
    • (2007) Fungal Genet. Biol. , vol.44 , pp. 258-268
    • Vélëz, H.1
  • 36
    • 84884837328 scopus 로고    scopus 로고
    • Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola
    • 36 Calmes, B., et al. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Front. Plant Sci. 4 (2013), 1–18.
    • (2013) Front. Plant Sci. , vol.4 , pp. 1-18
    • Calmes, B.1
  • 37
    • 0023969915 scopus 로고
    • NADPH generation in Aspergillus nidulans: is the mannitol cycle involved?
    • 37 Singh, M., et al. NADPH generation in Aspergillus nidulans: is the mannitol cycle involved?. J. Gen. Microbiol. 134 (1988), 643–654.
    • (1988) J. Gen. Microbiol. , vol.134 , pp. 643-654
    • Singh, M.1
  • 38
    • 0031029932 scopus 로고    scopus 로고
    • Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress
    • 38 Chaturvedi, V., et al. Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J. Bacteriol. 179 (1997), 157–162.
    • (1997) J. Bacteriol. , vol.179 , pp. 157-162
    • Chaturvedi, V.1
  • 39
    • 84897423636 scopus 로고    scopus 로고
    • ROS as key players in plant stress signaling
    • 39 Baxter, A., et al. ROS as key players in plant stress signaling. J. Exp. Bot. 65 (2014), 1229–1240.
    • (2014) J. Exp. Bot. , vol.65 , pp. 1229-1240
    • Baxter, A.1
  • 40
    • 0028171293 scopus 로고
    • 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response
    • 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79 (1994), 583–593.
    • (1994) Cell , vol.79 , pp. 583-593
    • Levine, A.1
  • 41
    • 0006580796 scopus 로고
    • − generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans
    • − generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol. Plant Pathol. 27 (1985), 311–322.
    • (1985) Physiol. Plant Pathol. , vol.27 , pp. 311-322
    • Doke, N.1
  • 42
    • 33745646568 scopus 로고    scopus 로고
    • Production of reactive oxygen species by plant NADPH oxidases
    • 42 Sagi, M., Fluhr, R., Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 (2006), 336–340.
    • (2006) Plant Physiol. , vol.141 , pp. 336-340
    • Sagi, M.1    Fluhr, R.2
  • 43
    • 60849086516 scopus 로고    scopus 로고
    • E for global analysis of salicylic acid-induced plant protein secretion responses
    • E for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res. 8 (2009), 82–93.
    • (2009) J. Proteome Res. , vol.8 , pp. 82-93
    • Cheng, F.1
  • 44
    • 25144446128 scopus 로고    scopus 로고
    • Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots
    • 44 Kukavica, B., et al. Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226 (2005), 191–197.
    • (2005) Protoplasma , vol.226 , pp. 191-197
    • Kukavica, B.1
  • 45
    • 0032410392 scopus 로고    scopus 로고
    • Antioxidant defenses of the apoplast
    • 45 Vanacker, H., et al. Antioxidant defenses of the apoplast. Protoplasma 205 (1998), 129–140.
    • (1998) Protoplasma , vol.205 , pp. 129-140
    • Vanacker, H.1
  • 46
    • 0035212728 scopus 로고    scopus 로고
    • Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells
    • 46 Corpas, F., et al. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6 (2001), 145–150.
    • (2001) Trends Plant Sci. , vol.6 , pp. 145-150
    • Corpas, F.1
  • 47
    • 0036001093 scopus 로고    scopus 로고
    • The apoplastic oxidative burst in response to biotic stress in plants: a three-component system
    • 47 Bolwell, G., et al. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53 (2002), 1367–1376.
    • (2002) J. Exp. Bot. , vol.53 , pp. 1367-1376
    • Bolwell, G.1
  • 48
    • 0036779326 scopus 로고    scopus 로고
    • Hydrogen peroxide signaling
    • 48 Neill, S., et al. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5 (2002), 388–395.
    • (2002) Curr. Opin. Plant Biol. , vol.5 , pp. 388-395
    • Neill, S.1
  • 49
    • 0030266346 scopus 로고    scopus 로고
    • Resistance gene-dependent plant defense responses
    • 49 Hammond-Kosack, K., Jones, J., Resistance gene-dependent plant defense responses. Plant Cell 8 (1996), 1773–1791.
    • (1996) Plant Cell , vol.8 , pp. 1773-1791
    • Hammond-Kosack, K.1    Jones, J.2
  • 50
    • 77952089074 scopus 로고    scopus 로고
    • ROS in biotic interactions
    • 50 Torres, M., ROS in biotic interactions. Physiol. Plant. 138 (2010), 414–429.
    • (2010) Physiol. Plant. , vol.138 , pp. 414-429
    • Torres, M.1
  • 51
    • 84877654728 scopus 로고    scopus 로고
    • ROS-mediated lipid peroxidation and RES-activated signaling
    • 51 Farmer, E., Mueller, M., ROS-mediated lipid peroxidation and RES-activated signaling. Ann. Rev. Plant Biol. 64 (2013), 429–450.
    • (2013) Ann. Rev. Plant Biol. , vol.64 , pp. 429-450
    • Farmer, E.1    Mueller, M.2
  • 52
    • 84863983740 scopus 로고    scopus 로고
    • Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses
    • 52 Ullery, J., Marnet, L., Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses. BBA Biomembr. 1818 (2012), 2424–2435.
    • (2012) BBA Biomembr. , vol.1818 , pp. 2424-2435
    • Ullery, J.1    Marnet, L.2
  • 53
    • 77952650680 scopus 로고    scopus 로고
    • Systems analysis of protein modification and cellular responses induced by electrophile stress
    • 53 Jacobs, A., Marnett, L., Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts Chem. Res. 43 (2010), 673–683.
    • (2010) Accounts Chem. Res. , vol.43 , pp. 673-683
    • Jacobs, A.1    Marnett, L.2
  • 54
    • 33644998997 scopus 로고    scopus 로고
    • Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens
    • 54 Griffiths, G., et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139 (2005), 1902–1913.
    • (2005) Plant Physiol. , vol.139 , pp. 1902-1913
    • Griffiths, G.1
  • 55
    • 0032549798 scopus 로고    scopus 로고
    • Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity
    • 55 Alvarez, M., et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92 (1998), 773–784.
    • (1998) Cell , vol.92 , pp. 773-784
    • Alvarez, M.1
  • 56
    • 0037696318 scopus 로고    scopus 로고
    • Reactive electrophile species activate defense gene expression in Arabidopsis
    • 56 Almeras, E., et al. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J. 34 (2003), 202–216.
    • (2003) Plant J. , vol.34 , pp. 202-216
    • Almeras, E.1
  • 57
  • 58
    • 66349099334 scopus 로고    scopus 로고
    • A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host
    • 58 Chi, M., et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLOS Pathog., 5, 2009, e1000401.
    • (2009) PLOS Pathog. , vol.5 , pp. e1000401
    • Chi, M.1
  • 59
    • 84866374255 scopus 로고    scopus 로고
    • Pseudomonas syringae catalases are collectively required for plant pathogenesis
    • 59 Guo, M., et al. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194 (2012), 5054–5064.
    • (2012) J. Bacteriol. , vol.194 , pp. 5054-5064
    • Guo, M.1
  • 60
    • 0036794510 scopus 로고    scopus 로고
    • Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata
    • 60 Jennings, D., et al. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J. 32 (2002), 41–49.
    • (2002) Plant J. , vol.32 , pp. 41-49
    • Jennings, D.1
  • 61
    • 84888136925 scopus 로고    scopus 로고
    • Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea
    • 61 Williamson, J., et al. Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea. Plant Cell Tissue Org. 115 (2013), 367–375.
    • (2013) Plant Cell Tissue Org. , vol.115 , pp. 367-375
    • Williamson, J.1
  • 62
    • 18744416973 scopus 로고    scopus 로고
    • Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae
    • 62 Voegele, R., et al. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol. 137 (2005), 190–198.
    • (2005) Plant Physiol. , vol.137 , pp. 190-198
    • Voegele, R.1
  • 63
    • 0001297232 scopus 로고
    • Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva)
    • 63 Joosten, M., et al. Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva). Eur. J. Plant Pathol. 96 (1990), 103–112.
    • (1990) Eur. J. Plant Pathol. , vol.96 , pp. 103-112
    • Joosten, M.1
  • 64
    • 0032425209 scopus 로고    scopus 로고
    • Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense
    • 64 Jennings, D., et al. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 15129–15133.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 15129-15133
    • Jennings, D.1
  • 65
    • 47349127024 scopus 로고    scopus 로고
    • Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata
    • 65 Vélëz, H., et al. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. FEMS Microbiol. Lett. 285 (2008), 122–129.
    • (2008) FEMS Microbiol. Lett. , vol.285 , pp. 122-129
    • Vélëz, H.1
  • 66
    • 34548668180 scopus 로고    scopus 로고
    • Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells
    • 66 Juchaux-Cachau, M., et al. Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells. Plant Physiol. 145 (2007), 62–74.
    • (2007) Plant Physiol. , vol.145 , pp. 62-74
    • Juchaux-Cachau, M.1
  • 67
    • 0034729657 scopus 로고    scopus 로고
    • The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea
    • 67 Gorvin, M., Levine, A., The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10 (2000), 751–757.
    • (2000) Curr. Biol. , vol.10 , pp. 751-757
    • Gorvin, M.1    Levine, A.2
  • 68
    • 0032560508 scopus 로고    scopus 로고
    • Gene for gene resistance without the hypersensitive response in Arabidopsis dnd1 mutant
    • 68 Yu, I., et al. Gene for gene resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 7819–7824.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 7819-7824
    • Yu, I.1
  • 69
    • 84875809308 scopus 로고    scopus 로고
    • Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype
    • 69 Morita, Y., et al. Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype. Mol. Plant Pathol. 14 (2013), 365–378.
    • (2013) Mol. Plant Pathol. , vol.14 , pp. 365-378
    • Morita, Y.1
  • 70
    • 84865803526 scopus 로고    scopus 로고
    • 2 and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus
    • 2 and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13 (2012), 900–914.
    • (2012) Mol. Plant Pathol. , vol.13 , pp. 900-914
    • Yang, S.1    Chung, K.2
  • 71
    • 41049116116 scopus 로고    scopus 로고
    • NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea
    • 71 Segmüller, N., et al. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant Microbe Interact. 21 (2008), 808–819.
    • (2008) Mol. Plant Microbe Interact. , vol.21 , pp. 808-819
    • Segmüller, N.1
  • 72
    • 84946747629 scopus 로고    scopus 로고
    • Tomato plants overexpressing a celery mannitol dehydrogenase (MTD) have decreased susceptibility to Botrytis cinerea
    • 72 Patel, T., et al. Tomato plants overexpressing a celery mannitol dehydrogenase (MTD) have decreased susceptibility to Botrytis cinerea. Am. J. Plant Sci. 6 (2015), 1116–1125.
    • (2015) Am. J. Plant Sci. , vol.6 , pp. 1116-1125
    • Patel, T.1
  • 73
    • 0029119130 scopus 로고
    • Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco
    • 73 Conrath, U., et al. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. U.S.A. 92 (1995), 7143–7147.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 7143-7147
    • Conrath, U.1
  • 74
    • 0029082871 scopus 로고
    • Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3
    • 74 Williamson, J.D., et al. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc. Natl. Acad. Sci. U.S.A. 92 (1995), 7148–7152.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 7148-7152
    • Williamson, J.D.1
  • 75
    • 0027086425 scopus 로고
    • Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus
    • 75 Kiedrowski, S., et al. Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J. 11 (1992), 4677–4684.
    • (1992) EMBO J. , vol.11 , pp. 4677-4684
    • Kiedrowski, S.1
  • 76
    • 0029862154 scopus 로고    scopus 로고
    • Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light
    • 76 Lauter, F., Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light. Mol. Gen. Genet. 252 (1996), 751–754.
    • (1996) Mol. Gen. Genet. , vol.252 , pp. 751-754
    • Lauter, F.1
  • 77
    • 0028121785 scopus 로고
    • Mannitol metabolism in celery stressed by excess macronutrients
    • 77 Stoop, J., Pharr, D.M., Mannitol metabolism in celery stressed by excess macronutrients. Plant Physiol. 106 (1994), 503–511.
    • (1994) Plant Physiol. , vol.106 , pp. 503-511
    • Stoop, J.1    Pharr, D.M.2
  • 78
    • 0000160467 scopus 로고
    • A Pathway for photosynthetic carbon flow to mannitol in celery leaves: Activity and localization of key enzymes
    • 78 Rumpho, M., Edwards, G., A Pathway for photosynthetic carbon flow to mannitol in celery leaves: Activity and localization of key enzymes. Plant Physiol. 73 (1983), 869–873.
    • (1983) Plant Physiol. , vol.73 , pp. 869-873
    • Rumpho, M.1    Edwards, G.2
  • 79
    • 0007709924 scopus 로고
    • Sugar alcohol metabolism in source leaves
    • M. Madore W. Lucas American Society of Plant Physiologists
    • 79 Loescher, W., et al. Sugar alcohol metabolism in source leaves. Madore, M., Lucas, W., (eds.) Carbon Partitioning and Source-Sink Interactions in Plants, 1995, American Society of Plant Physiologists, 170–179.
    • (1995) Carbon Partitioning and Source-Sink Interactions in Plants , pp. 170-179
    • Loescher, W.1
  • 80
    • 0031403736 scopus 로고    scopus 로고
    • Subcellular localization of celery mannitol dehydrogenase: a cytosolic metabolic enzyme in nuclei
    • 80 Yamamoto, Y., et al. Subcellular localization of celery mannitol dehydrogenase: a cytosolic metabolic enzyme in nuclei. Plant Physiol. 115 (1997), 1397–1403.
    • (1997) Plant Physiol. , vol.115 , pp. 1397-1403
    • Yamamoto, Y.1
  • 81
    • 0030296231 scopus 로고    scopus 로고
    • Immunolocalization of mannitol dehydrogenase in celery plants and cells
    • 81 Zamski, E., et al. Immunolocalization of mannitol dehydrogenase in celery plants and cells. Plant Physiol. 112 (1996), 931–938.
    • (1996) Plant Physiol. , vol.112 , pp. 931-938
    • Zamski, E.1
  • 82
    • 70350223813 scopus 로고    scopus 로고
    • Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens
    • 82 Cheng, F., et al. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta 230 (2009), 1093–1103.
    • (2009) Planta , vol.230 , pp. 1093-1103
    • Cheng, F.1
  • 83
    • 77949599395 scopus 로고    scopus 로고
    • Data-independent liquid chromatography/mass spectrometry (LC/MSE) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase
    • 83 Blackburn, K., et al. Data-independent liquid chromatography/mass spectrometry (LC/MSE) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase. Rapid Commun. Mass Spectrom. 24 (2010), 1009–1016.
    • (2010) Rapid Commun. Mass Spectrom. , vol.24 , pp. 1009-1016
    • Blackburn, K.1
  • 84
    • 84866849347 scopus 로고    scopus 로고
    • Unconventional protein secretion
    • 84 Ding, Y., et al. Unconventional protein secretion. Trends Plant Sci. 17 (2012), 606–615.
    • (2012) Trends Plant Sci. , vol.17 , pp. 606-615
    • Ding, Y.1
  • 85
    • 84902489866 scopus 로고    scopus 로고
    • Unconventional protein secretion (UPS) pathways in plants
    • 85 Ding, Y., et al. Unconventional protein secretion (UPS) pathways in plants. Curr. Opin. Cell Biol. 29 (2014), 107–115.
    • (2014) Curr. Opin. Cell Biol. , vol.29 , pp. 107-115
    • Ding, Y.1
  • 86
    • 77149131806 scopus 로고    scopus 로고
    • Plant secretome: unlocking the secrets of the secreted proteins
    • 86 Agarwal, G., et al. Plant secretome: unlocking the secrets of the secreted proteins. Proteomics 10 (2010), 799–827.
    • (2010) Proteomics , vol.10 , pp. 799-827
    • Agarwal, G.1
  • 87
    • 77953195874 scopus 로고    scopus 로고
    • Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome
    • 87 Rose, J., Lee, S., Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. 153 (2010), 433–436.
    • (2010) Plant Physiol. , vol.153 , pp. 433-436
    • Rose, J.1    Lee, S.2
  • 88
    • 77956621227 scopus 로고    scopus 로고
    • Is there leaderless protein secretion in plants?
    • 88 Cheng, F., Williamson, J., Is there leaderless protein secretion in plants?. Plant Signal. Behav. 5 (2010), 129–131.
    • (2010) Plant Signal. Behav. , vol.5 , pp. 129-131
    • Cheng, F.1    Williamson, J.2
  • 89
    • 84979952892 scopus 로고    scopus 로고
    • Progeny of selfed plants from tomato breeding line ‘NC1 Grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the ‘early blight’ fungus Alternaria solani
    • 89 Patel, T., et al. Progeny of selfed plants from tomato breeding line ‘NC1 Grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the ‘early blight’ fungus Alternaria solani. Plant Health Prog. 16 (2015), 115–117.
    • (2015) Plant Health Prog. , vol.16 , pp. 115-117
    • Patel, T.1
  • 90
    • 0028150517 scopus 로고
    • Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity
    • 90 Everard, J., et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol. 106 (1994), 281–292.
    • (1994) Plant Physiol. , vol.106 , pp. 281-292
    • Everard, J.1
  • 91
    • 78650267923 scopus 로고    scopus 로고
    • The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses
    • 91 Landouar-Arsivaud, L., et al. The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses. Plant Physiol. Biochem. 49 (2011), 2–8.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 2-8
    • Landouar-Arsivaud, L.1
  • 92
    • 0035171906 scopus 로고    scopus 로고
    • Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses
    • 92 Zamski, E., et al. Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses. Plant Mol. Biol. 47 (2001), 621–631.
    • (2001) Plant Mol. Biol. , vol.47 , pp. 621-631
    • Zamski, E.1
  • 93
    • 33846582376 scopus 로고    scopus 로고
    • Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance
    • 93 Conde, C., et al. Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol. 48 (2007), 42–53.
    • (2007) Plant Cell Physiol. , vol.48 , pp. 42-53
    • Conde, C.1
  • 94
    • 0035059530 scopus 로고    scopus 로고
    • Identification of a mannitol transporter, AgMaT1, in celery phloem
    • 94 Noiraud, N., et al. Identification of a mannitol transporter, AgMaT1, in celery phloem. Plant Cell 13 (2001), 695–705.
    • (2001) Plant Cell , vol.13 , pp. 695-705
    • Noiraud, N.1
  • 95
    • 0031657186 scopus 로고    scopus 로고
    • Mannitol transport by vacuoles of storage parenchyma of celery petioles operates by facilitated diffusion
    • 95 Greutert, H., et al. Mannitol transport by vacuoles of storage parenchyma of celery petioles operates by facilitated diffusion. J. Plant Physiol. 153 (1997), 91–96.
    • (1997) J. Plant Physiol. , vol.153 , pp. 91-96
    • Greutert, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.