-
1
-
-
84979315537
-
Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism
-
1 Lewis, D., Smith, D., Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol. 66 (1967), 143–184.
-
(1967)
New Phytol.
, vol.66
, pp. 143-184
-
-
Lewis, D.1
Smith, D.2
-
2
-
-
0001737876
-
Mannitol metabolism in plants: a method for coping with stress
-
2 Stoop, J.M.H., et al. Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci. 1 (1996), 139–144.
-
(1996)
Trends Plant Sci.
, vol.1
, pp. 139-144
-
-
Stoop, J.M.H.1
-
3
-
-
0001704090
-
Regulation of sugar alcohol biosynthesis
-
R.C. Leegood et al. (eds.) Kluwer Academic
-
3 Loescher, W.H., Everard, J.D., Regulation of sugar alcohol biosynthesis. Leegood, R.C., et al. (eds.) Photosynthesis: Physiology and Metabolism, 2000, Kluwer Academic, 275–299.
-
(2000)
Photosynthesis: Physiology and Metabolism
, pp. 275-299
-
-
Loescher, W.H.1
Everard, J.D.2
-
4
-
-
0036273133
-
Sugar alcohols, salt stress, and fungal resistance: polyols- multifunctional plant protection
-
4 Williamson, J.D., et al. Sugar alcohols, salt stress, and fungal resistance: polyols- multifunctional plant protection. J. Am. Soc. Hort. Sci. 127 (2002), 467–473.
-
(2002)
J. Am. Soc. Hort. Sci.
, vol.127
, pp. 467-473
-
-
Williamson, J.D.1
-
5
-
-
10044228161
-
Salt tolerance and salinity effects on plants: a review
-
5 Parida, A., Das, A., Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 (2005), 324–349.
-
(2005)
Ecotoxicol. Environ. Saf.
, vol.60
, pp. 324-349
-
-
Parida, A.1
Das, A.2
-
6
-
-
41749108644
-
Salt stress and phyto-biochemical responses of plants – a review
-
6 Parvaiz, A., Satyawati, S., Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ. 54 (2008), 89–99.
-
(2008)
Plant Soil Environ.
, vol.54
, pp. 89-99
-
-
Parvaiz, A.1
Satyawati, S.2
-
7
-
-
79958768625
-
Enhanced salt stress tolerance in transgenic potato plants
-
7 Rahnama, H., et al. Enhanced salt stress tolerance in transgenic potato plants. Acta Physiol. Plant 33 (2011), 1521–1532.
-
(2011)
Acta Physiol. Plant
, vol.33
, pp. 1521-1532
-
-
Rahnama, H.1
-
8
-
-
0030807647
-
Salinity and drought tolerance of mannitol-accumulating transgenic tobacco
-
8 Karakas, B., et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ. 20 (1997), 609–616.
-
(1997)
Plant Cell Environ.
, vol.20
, pp. 609-616
-
-
Karakas, B.1
-
9
-
-
0015406621
-
Water relations of sugar-tolerant yeasts: the role of intracellular polyol
-
9 Brown, A., Simpson, J., Water relations of sugar-tolerant yeasts: the role of intracellular polyol. J. Gen. Microbiol. 72 (1972), 589–591.
-
(1972)
J. Gen. Microbiol.
, vol.72
, pp. 589-591
-
-
Brown, A.1
Simpson, J.2
-
10
-
-
0017031867
-
Microbial water stress
-
10 Brown, A., Microbial water stress. Bacteriol. Rev. 40 (1976), 803–846.
-
(1976)
Bacteriol. Rev.
, vol.40
, pp. 803-846
-
-
Brown, A.1
-
11
-
-
0020336190
-
Living with water stress: evolution of osmolyte systems
-
11 Yancey, P., et al. Living with water stress: evolution of osmolyte systems. Science 24 (1982), 1214–1222.
-
(1982)
Science
, vol.24
, pp. 1214-1222
-
-
Yancey, P.1
-
12
-
-
24644450812
-
Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
-
12 Yancey, P., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208 (2005), 2819–2830.
-
(2005)
J. Exp. Biol.
, vol.208
, pp. 2819-2830
-
-
Yancey, P.1
-
13
-
-
84946202197
-
Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms
-
13 Yancey, P., Siebenaller, J., Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218 (2015), 1880–1896.
-
(2015)
J. Exp. Biol.
, vol.218
, pp. 1880-1896
-
-
Yancey, P.1
Siebenaller, J.2
-
14
-
-
77956178864
-
Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development
-
14 Bernstein, N., et al. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic. Biol. Med. 49 (2010), 1161–1171.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1161-1171
-
-
Bernstein, N.1
-
15
-
-
34447108280
-
Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance
-
15 Leshem, Y., et al. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51 (2007), 185–197.
-
(2007)
Plant J.
, vol.51
, pp. 185-197
-
-
Leshem, Y.1
-
16
-
-
0034045986
-
Dual action of the active oxygen species during plant stress responses
-
16 Dat, J., et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57 (2000), 779–795.
-
(2000)
Cell. Mol. Life Sci.
, vol.57
, pp. 779-795
-
-
Dat, J.1
-
17
-
-
45249125699
-
Hydroxyl radical scavenging activity of compatible solutes
-
17 Smirnoff, N., Cumbes, Q., Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28 (1989), 1057–1060.
-
(1989)
Phytochemistry
, vol.28
, pp. 1057-1060
-
-
Smirnoff, N.1
Cumbes, Q.2
-
18
-
-
0031401180
-
Mannitol protects against oxidation by hydroxyl radicals
-
18 Shen, B., et al. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115 (1997), 527–532.
-
(1997)
Plant Physiol.
, vol.115
, pp. 527-532
-
-
Shen, B.1
-
19
-
-
0031127904
-
Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
-
19 Shen, B., et al. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113 (1997), 1177–1183.
-
(1997)
Plant Physiol.
, vol.113
, pp. 1177-1183
-
-
Shen, B.1
-
20
-
-
0031396755
-
2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley
-
2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley. Plant Physiol. 115 (1997), 241–248.
-
(1997)
Plant Physiol.
, vol.115
, pp. 241-248
-
-
Moore, B.1
-
21
-
-
84918833988
-
Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ([Formula presented]) in aqueous solution
-
21 Buxton, G., et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ([Formula presented]) in aqueous solution. J. Phys. Chem. Ref. Data 17 (1988), 513–886.
-
(1988)
J. Phys. Chem. Ref. Data
, vol.17
, pp. 513-886
-
-
Buxton, G.1
-
22
-
-
0026552614
-
Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol
-
22 Tarczynski, M., et al. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 2600–2604.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 2600-2604
-
-
Tarczynski, M.1
-
23
-
-
0027464813
-
Stress protection of transgenic tobacco by production of the osmolyte mannitol
-
23 Tarczynski, M., et al. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259 (1993), 508–510.
-
(1993)
Science
, vol.259
, pp. 508-510
-
-
Tarczynski, M.1
-
24
-
-
0027209389
-
Strategies of antioxidant defense
-
24 Sies, H., Strategies of antioxidant defense. Eur. J. Biochem. 215 (1993), 213–219.
-
(1993)
Eur. J. Biochem.
, vol.215
, pp. 213-219
-
-
Sies, H.1
-
25
-
-
0030894162
-
Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress: oxidants and antioxidants
-
25 Sies, H., Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress: oxidants and antioxidants. Exp. Physiol. 82 (1997), 291–295.
-
(1997)
Exp. Physiol.
, vol.82
, pp. 291-295
-
-
Sies, H.1
-
26
-
-
84949408715
-
On the use of the use of [Formula presented] scavengers in biological systems
-
26 Czapski, G., On the use of the use of [Formula presented] scavengers in biological systems. Isr. J. Chem. 24 (1984), 29–32.
-
(1984)
Isr. J. Chem.
, vol.24
, pp. 29-32
-
-
Czapski, G.1
-
27
-
-
12844278044
-
The oxidative environment and protein damage
-
27 Davies, M.J., The oxidative environment and protein damage. Biochim. Biophys. Acta 1703 (2005), 93–109.
-
(2005)
Biochim. Biophys. Acta
, vol.1703
, pp. 93-109
-
-
Davies, M.J.1
-
28
-
-
34249776327
-
Decoding the mannitol enigma in filamentous fungi
-
28 Solomon, P., et al. Decoding the mannitol enigma in filamentous fungi. Trends Microbiol. 15 (2007), 257–262.
-
(2007)
Trends Microbiol.
, vol.15
, pp. 257-262
-
-
Solomon, P.1
-
29
-
-
0017850486
-
Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata
-
29 Hult, K., Gatenbeck, S., Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur. J. Biochem. 88 (1978), 607–612.
-
(1978)
Eur. J. Biochem.
, vol.88
, pp. 607-612
-
-
Hult, K.1
Gatenbeck, S.2
-
30
-
-
0014478209
-
D-mannitol metabolism by Aspergillus candidus
-
30 Strandberg, G., D-mannitol metabolism by Aspergillus candidus. J. Bacteriol. 97 (1969), 1305–1309.
-
(1969)
J. Bacteriol.
, vol.97
, pp. 1305-1309
-
-
Strandberg, G.1
-
31
-
-
0015264029
-
Mannitol biosynthesis in Sclerotinia sclerotiorum
-
31 Wang, S., Torrneau, D., Mannitol biosynthesis in Sclerotinia sclerotiorum. Arch. Mikrobiol. 81 (1972), 91–99.
-
(1972)
Arch. Mikrobiol.
, vol.81
, pp. 91-99
-
-
Wang, S.1
Torrneau, D.2
-
32
-
-
77956806246
-
Spatial and developmental differentiation of mannitol dehydrogenase and mannitol 1-phosphate dehydrogenase in Aspergillus niger
-
32 Aguilar-Osorio, G., et al. Spatial and developmental differentiation of mannitol dehydrogenase and mannitol 1-phosphate dehydrogenase in Aspergillus niger. Eukaryot. Cell 9 (2010), 1398–1402.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 1398-1402
-
-
Aguilar-Osorio, G.1
-
33
-
-
77952784465
-
Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea
-
33 Dulermo, T., et al. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochem. J. 427 (2010), 323–332.
-
(2010)
Biochem. J.
, vol.427
, pp. 323-332
-
-
Dulermo, T.1
-
34
-
-
12444262360
-
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
-
34 Solomon, P., et al. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Mol. Plant Microbe Interact. 18 (2005), 110–115.
-
(2005)
Mol. Plant Microbe Interact.
, vol.18
, pp. 110-115
-
-
Solomon, P.1
-
35
-
-
33847299514
-
Mannitol metabolism in the phytopathogenic fungus Alternaria alternata
-
35 Vélëz, H., et al. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 44 (2007), 258–268.
-
(2007)
Fungal Genet. Biol.
, vol.44
, pp. 258-268
-
-
Vélëz, H.1
-
36
-
-
84884837328
-
Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola
-
36 Calmes, B., et al. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Front. Plant Sci. 4 (2013), 1–18.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 1-18
-
-
Calmes, B.1
-
37
-
-
0023969915
-
NADPH generation in Aspergillus nidulans: is the mannitol cycle involved?
-
37 Singh, M., et al. NADPH generation in Aspergillus nidulans: is the mannitol cycle involved?. J. Gen. Microbiol. 134 (1988), 643–654.
-
(1988)
J. Gen. Microbiol.
, vol.134
, pp. 643-654
-
-
Singh, M.1
-
38
-
-
0031029932
-
Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress
-
38 Chaturvedi, V., et al. Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J. Bacteriol. 179 (1997), 157–162.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 157-162
-
-
Chaturvedi, V.1
-
39
-
-
84897423636
-
ROS as key players in plant stress signaling
-
39 Baxter, A., et al. ROS as key players in plant stress signaling. J. Exp. Bot. 65 (2014), 1229–1240.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 1229-1240
-
-
Baxter, A.1
-
40
-
-
0028171293
-
2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response
-
2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79 (1994), 583–593.
-
(1994)
Cell
, vol.79
, pp. 583-593
-
-
Levine, A.1
-
41
-
-
0006580796
-
− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans
-
− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol. Plant Pathol. 27 (1985), 311–322.
-
(1985)
Physiol. Plant Pathol.
, vol.27
, pp. 311-322
-
-
Doke, N.1
-
42
-
-
33745646568
-
Production of reactive oxygen species by plant NADPH oxidases
-
42 Sagi, M., Fluhr, R., Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 (2006), 336–340.
-
(2006)
Plant Physiol.
, vol.141
, pp. 336-340
-
-
Sagi, M.1
Fluhr, R.2
-
43
-
-
60849086516
-
E for global analysis of salicylic acid-induced plant protein secretion responses
-
E for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res. 8 (2009), 82–93.
-
(2009)
J. Proteome Res.
, vol.8
, pp. 82-93
-
-
Cheng, F.1
-
44
-
-
25144446128
-
Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots
-
44 Kukavica, B., et al. Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226 (2005), 191–197.
-
(2005)
Protoplasma
, vol.226
, pp. 191-197
-
-
Kukavica, B.1
-
45
-
-
0032410392
-
Antioxidant defenses of the apoplast
-
45 Vanacker, H., et al. Antioxidant defenses of the apoplast. Protoplasma 205 (1998), 129–140.
-
(1998)
Protoplasma
, vol.205
, pp. 129-140
-
-
Vanacker, H.1
-
46
-
-
0035212728
-
Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells
-
46 Corpas, F., et al. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6 (2001), 145–150.
-
(2001)
Trends Plant Sci.
, vol.6
, pp. 145-150
-
-
Corpas, F.1
-
47
-
-
0036001093
-
The apoplastic oxidative burst in response to biotic stress in plants: a three-component system
-
47 Bolwell, G., et al. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53 (2002), 1367–1376.
-
(2002)
J. Exp. Bot.
, vol.53
, pp. 1367-1376
-
-
Bolwell, G.1
-
48
-
-
0036779326
-
Hydrogen peroxide signaling
-
48 Neill, S., et al. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5 (2002), 388–395.
-
(2002)
Curr. Opin. Plant Biol.
, vol.5
, pp. 388-395
-
-
Neill, S.1
-
49
-
-
0030266346
-
Resistance gene-dependent plant defense responses
-
49 Hammond-Kosack, K., Jones, J., Resistance gene-dependent plant defense responses. Plant Cell 8 (1996), 1773–1791.
-
(1996)
Plant Cell
, vol.8
, pp. 1773-1791
-
-
Hammond-Kosack, K.1
Jones, J.2
-
50
-
-
77952089074
-
ROS in biotic interactions
-
50 Torres, M., ROS in biotic interactions. Physiol. Plant. 138 (2010), 414–429.
-
(2010)
Physiol. Plant.
, vol.138
, pp. 414-429
-
-
Torres, M.1
-
51
-
-
84877654728
-
ROS-mediated lipid peroxidation and RES-activated signaling
-
51 Farmer, E., Mueller, M., ROS-mediated lipid peroxidation and RES-activated signaling. Ann. Rev. Plant Biol. 64 (2013), 429–450.
-
(2013)
Ann. Rev. Plant Biol.
, vol.64
, pp. 429-450
-
-
Farmer, E.1
Mueller, M.2
-
52
-
-
84863983740
-
Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses
-
52 Ullery, J., Marnet, L., Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses. BBA Biomembr. 1818 (2012), 2424–2435.
-
(2012)
BBA Biomembr.
, vol.1818
, pp. 2424-2435
-
-
Ullery, J.1
Marnet, L.2
-
53
-
-
77952650680
-
Systems analysis of protein modification and cellular responses induced by electrophile stress
-
53 Jacobs, A., Marnett, L., Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts Chem. Res. 43 (2010), 673–683.
-
(2010)
Accounts Chem. Res.
, vol.43
, pp. 673-683
-
-
Jacobs, A.1
Marnett, L.2
-
54
-
-
33644998997
-
Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens
-
54 Griffiths, G., et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139 (2005), 1902–1913.
-
(2005)
Plant Physiol.
, vol.139
, pp. 1902-1913
-
-
Griffiths, G.1
-
55
-
-
0032549798
-
Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity
-
55 Alvarez, M., et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92 (1998), 773–784.
-
(1998)
Cell
, vol.92
, pp. 773-784
-
-
Alvarez, M.1
-
56
-
-
0037696318
-
Reactive electrophile species activate defense gene expression in Arabidopsis
-
56 Almeras, E., et al. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J. 34 (2003), 202–216.
-
(2003)
Plant J.
, vol.34
, pp. 202-216
-
-
Almeras, E.1
-
58
-
-
66349099334
-
A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host
-
58 Chi, M., et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLOS Pathog., 5, 2009, e1000401.
-
(2009)
PLOS Pathog.
, vol.5
, pp. e1000401
-
-
Chi, M.1
-
59
-
-
84866374255
-
Pseudomonas syringae catalases are collectively required for plant pathogenesis
-
59 Guo, M., et al. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194 (2012), 5054–5064.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5054-5064
-
-
Guo, M.1
-
60
-
-
0036794510
-
Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata
-
60 Jennings, D., et al. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J. 32 (2002), 41–49.
-
(2002)
Plant J.
, vol.32
, pp. 41-49
-
-
Jennings, D.1
-
61
-
-
84888136925
-
Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea
-
61 Williamson, J., et al. Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea. Plant Cell Tissue Org. 115 (2013), 367–375.
-
(2013)
Plant Cell Tissue Org.
, vol.115
, pp. 367-375
-
-
Williamson, J.1
-
62
-
-
18744416973
-
Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae
-
62 Voegele, R., et al. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol. 137 (2005), 190–198.
-
(2005)
Plant Physiol.
, vol.137
, pp. 190-198
-
-
Voegele, R.1
-
63
-
-
0001297232
-
Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva)
-
63 Joosten, M., et al. Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva). Eur. J. Plant Pathol. 96 (1990), 103–112.
-
(1990)
Eur. J. Plant Pathol.
, vol.96
, pp. 103-112
-
-
Joosten, M.1
-
64
-
-
0032425209
-
Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense
-
64 Jennings, D., et al. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 15129–15133.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 15129-15133
-
-
Jennings, D.1
-
65
-
-
47349127024
-
Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata
-
65 Vélëz, H., et al. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. FEMS Microbiol. Lett. 285 (2008), 122–129.
-
(2008)
FEMS Microbiol. Lett.
, vol.285
, pp. 122-129
-
-
Vélëz, H.1
-
66
-
-
34548668180
-
Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells
-
66 Juchaux-Cachau, M., et al. Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells. Plant Physiol. 145 (2007), 62–74.
-
(2007)
Plant Physiol.
, vol.145
, pp. 62-74
-
-
Juchaux-Cachau, M.1
-
67
-
-
0034729657
-
The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea
-
67 Gorvin, M., Levine, A., The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10 (2000), 751–757.
-
(2000)
Curr. Biol.
, vol.10
, pp. 751-757
-
-
Gorvin, M.1
Levine, A.2
-
68
-
-
0032560508
-
Gene for gene resistance without the hypersensitive response in Arabidopsis dnd1 mutant
-
68 Yu, I., et al. Gene for gene resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 7819–7824.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 7819-7824
-
-
Yu, I.1
-
69
-
-
84875809308
-
Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype
-
69 Morita, Y., et al. Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype. Mol. Plant Pathol. 14 (2013), 365–378.
-
(2013)
Mol. Plant Pathol.
, vol.14
, pp. 365-378
-
-
Morita, Y.1
-
70
-
-
84865803526
-
2 and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus
-
2 and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13 (2012), 900–914.
-
(2012)
Mol. Plant Pathol.
, vol.13
, pp. 900-914
-
-
Yang, S.1
Chung, K.2
-
71
-
-
41049116116
-
NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea
-
71 Segmüller, N., et al. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant Microbe Interact. 21 (2008), 808–819.
-
(2008)
Mol. Plant Microbe Interact.
, vol.21
, pp. 808-819
-
-
Segmüller, N.1
-
72
-
-
84946747629
-
Tomato plants overexpressing a celery mannitol dehydrogenase (MTD) have decreased susceptibility to Botrytis cinerea
-
72 Patel, T., et al. Tomato plants overexpressing a celery mannitol dehydrogenase (MTD) have decreased susceptibility to Botrytis cinerea. Am. J. Plant Sci. 6 (2015), 1116–1125.
-
(2015)
Am. J. Plant Sci.
, vol.6
, pp. 1116-1125
-
-
Patel, T.1
-
73
-
-
0029119130
-
Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco
-
73 Conrath, U., et al. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. U.S.A. 92 (1995), 7143–7147.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 7143-7147
-
-
Conrath, U.1
-
74
-
-
0029082871
-
Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3
-
74 Williamson, J.D., et al. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc. Natl. Acad. Sci. U.S.A. 92 (1995), 7148–7152.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 7148-7152
-
-
Williamson, J.D.1
-
75
-
-
0027086425
-
Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus
-
75 Kiedrowski, S., et al. Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J. 11 (1992), 4677–4684.
-
(1992)
EMBO J.
, vol.11
, pp. 4677-4684
-
-
Kiedrowski, S.1
-
76
-
-
0029862154
-
Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light
-
76 Lauter, F., Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light. Mol. Gen. Genet. 252 (1996), 751–754.
-
(1996)
Mol. Gen. Genet.
, vol.252
, pp. 751-754
-
-
Lauter, F.1
-
77
-
-
0028121785
-
Mannitol metabolism in celery stressed by excess macronutrients
-
77 Stoop, J., Pharr, D.M., Mannitol metabolism in celery stressed by excess macronutrients. Plant Physiol. 106 (1994), 503–511.
-
(1994)
Plant Physiol.
, vol.106
, pp. 503-511
-
-
Stoop, J.1
Pharr, D.M.2
-
78
-
-
0000160467
-
A Pathway for photosynthetic carbon flow to mannitol in celery leaves: Activity and localization of key enzymes
-
78 Rumpho, M., Edwards, G., A Pathway for photosynthetic carbon flow to mannitol in celery leaves: Activity and localization of key enzymes. Plant Physiol. 73 (1983), 869–873.
-
(1983)
Plant Physiol.
, vol.73
, pp. 869-873
-
-
Rumpho, M.1
Edwards, G.2
-
79
-
-
0007709924
-
Sugar alcohol metabolism in source leaves
-
M. Madore W. Lucas American Society of Plant Physiologists
-
79 Loescher, W., et al. Sugar alcohol metabolism in source leaves. Madore, M., Lucas, W., (eds.) Carbon Partitioning and Source-Sink Interactions in Plants, 1995, American Society of Plant Physiologists, 170–179.
-
(1995)
Carbon Partitioning and Source-Sink Interactions in Plants
, pp. 170-179
-
-
Loescher, W.1
-
80
-
-
0031403736
-
Subcellular localization of celery mannitol dehydrogenase: a cytosolic metabolic enzyme in nuclei
-
80 Yamamoto, Y., et al. Subcellular localization of celery mannitol dehydrogenase: a cytosolic metabolic enzyme in nuclei. Plant Physiol. 115 (1997), 1397–1403.
-
(1997)
Plant Physiol.
, vol.115
, pp. 1397-1403
-
-
Yamamoto, Y.1
-
81
-
-
0030296231
-
Immunolocalization of mannitol dehydrogenase in celery plants and cells
-
81 Zamski, E., et al. Immunolocalization of mannitol dehydrogenase in celery plants and cells. Plant Physiol. 112 (1996), 931–938.
-
(1996)
Plant Physiol.
, vol.112
, pp. 931-938
-
-
Zamski, E.1
-
82
-
-
70350223813
-
Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens
-
82 Cheng, F., et al. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta 230 (2009), 1093–1103.
-
(2009)
Planta
, vol.230
, pp. 1093-1103
-
-
Cheng, F.1
-
83
-
-
77949599395
-
Data-independent liquid chromatography/mass spectrometry (LC/MSE) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase
-
83 Blackburn, K., et al. Data-independent liquid chromatography/mass spectrometry (LC/MSE) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase. Rapid Commun. Mass Spectrom. 24 (2010), 1009–1016.
-
(2010)
Rapid Commun. Mass Spectrom.
, vol.24
, pp. 1009-1016
-
-
Blackburn, K.1
-
84
-
-
84866849347
-
Unconventional protein secretion
-
84 Ding, Y., et al. Unconventional protein secretion. Trends Plant Sci. 17 (2012), 606–615.
-
(2012)
Trends Plant Sci.
, vol.17
, pp. 606-615
-
-
Ding, Y.1
-
85
-
-
84902489866
-
Unconventional protein secretion (UPS) pathways in plants
-
85 Ding, Y., et al. Unconventional protein secretion (UPS) pathways in plants. Curr. Opin. Cell Biol. 29 (2014), 107–115.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 107-115
-
-
Ding, Y.1
-
86
-
-
77149131806
-
Plant secretome: unlocking the secrets of the secreted proteins
-
86 Agarwal, G., et al. Plant secretome: unlocking the secrets of the secreted proteins. Proteomics 10 (2010), 799–827.
-
(2010)
Proteomics
, vol.10
, pp. 799-827
-
-
Agarwal, G.1
-
87
-
-
77953195874
-
Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome
-
87 Rose, J., Lee, S., Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. 153 (2010), 433–436.
-
(2010)
Plant Physiol.
, vol.153
, pp. 433-436
-
-
Rose, J.1
Lee, S.2
-
88
-
-
77956621227
-
Is there leaderless protein secretion in plants?
-
88 Cheng, F., Williamson, J., Is there leaderless protein secretion in plants?. Plant Signal. Behav. 5 (2010), 129–131.
-
(2010)
Plant Signal. Behav.
, vol.5
, pp. 129-131
-
-
Cheng, F.1
Williamson, J.2
-
89
-
-
84979952892
-
Progeny of selfed plants from tomato breeding line ‘NC1 Grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the ‘early blight’ fungus Alternaria solani
-
89 Patel, T., et al. Progeny of selfed plants from tomato breeding line ‘NC1 Grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the ‘early blight’ fungus Alternaria solani. Plant Health Prog. 16 (2015), 115–117.
-
(2015)
Plant Health Prog.
, vol.16
, pp. 115-117
-
-
Patel, T.1
-
90
-
-
0028150517
-
Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity
-
90 Everard, J., et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol. 106 (1994), 281–292.
-
(1994)
Plant Physiol.
, vol.106
, pp. 281-292
-
-
Everard, J.1
-
91
-
-
78650267923
-
The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses
-
91 Landouar-Arsivaud, L., et al. The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses. Plant Physiol. Biochem. 49 (2011), 2–8.
-
(2011)
Plant Physiol. Biochem.
, vol.49
, pp. 2-8
-
-
Landouar-Arsivaud, L.1
-
92
-
-
0035171906
-
Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses
-
92 Zamski, E., et al. Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses. Plant Mol. Biol. 47 (2001), 621–631.
-
(2001)
Plant Mol. Biol.
, vol.47
, pp. 621-631
-
-
Zamski, E.1
-
93
-
-
33846582376
-
Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance
-
93 Conde, C., et al. Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol. 48 (2007), 42–53.
-
(2007)
Plant Cell Physiol.
, vol.48
, pp. 42-53
-
-
Conde, C.1
-
94
-
-
0035059530
-
Identification of a mannitol transporter, AgMaT1, in celery phloem
-
94 Noiraud, N., et al. Identification of a mannitol transporter, AgMaT1, in celery phloem. Plant Cell 13 (2001), 695–705.
-
(2001)
Plant Cell
, vol.13
, pp. 695-705
-
-
Noiraud, N.1
-
95
-
-
0031657186
-
Mannitol transport by vacuoles of storage parenchyma of celery petioles operates by facilitated diffusion
-
95 Greutert, H., et al. Mannitol transport by vacuoles of storage parenchyma of celery petioles operates by facilitated diffusion. J. Plant Physiol. 153 (1997), 91–96.
-
(1997)
J. Plant Physiol.
, vol.153
, pp. 91-96
-
-
Greutert, H.1
|