메뉴 건너뛰기




Volumn 12, Issue 6, 2016, Pages 588-593

On the growth and form of cortical convolutions

Author keywords

[No Author keywords available]

Indexed keywords

3D PRINTERS; CONVOLUTION; GEOMETRY; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MOLECULAR ORIENTATION;

EID: 84955567572     PISSN: 17452473     EISSN: 17452481     Source Type: Journal    
DOI: 10.1038/nphys3632     Document Type: Article
Times cited : (460)

References (40)
  • 4
    • 84897833435 scopus 로고    scopus 로고
    • Growth and folding of the mammalian cerebral cortex: From molecules to malformations
    • Sun, T., & Hevner, R. F. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nature Rev. Neurosci. 15, 217-232 (2014
    • (2014) Nature Rev. Neurosci , vol.15 , pp. 217-232
    • Sun, T.1    Hevner, R.F.2
  • 5
    • 79959924122 scopus 로고    scopus 로고
    • Development and evolution of the human neocortex
    • Lui, J. H., Hansen, D. V., & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18-36 (2011
    • (2011) Cell , vol.146 , pp. 18-36
    • Lui, J.H.1    Hansen, D.V.2    Kriegstein, A.R.3
  • 6
    • 84893973335 scopus 로고    scopus 로고
    • Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning
    • Bae, B., et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343, 764-768 (2014
    • (2014) Science , vol.343 , pp. 764-768
    • Bae, B.1
  • 7
    • 84879288057 scopus 로고    scopus 로고
    • Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain
    • Rash, B. G., Tomasi, S., Lim, H. D., Suh, C. Y., & Vaccarino, F. M. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33, 10802-10814 (2013
    • (2013) J. Neurosci , vol.33 , pp. 10802-10814
    • Rash, B.G.1    Tomasi, S.2    Lim, H.D.3    Suh, C.Y.4    Vaccarino, F.M.5
  • 8
    • 79959426933 scopus 로고    scopus 로고
    • A role of intermediate radial glia in the tangential expansion of the mammalian cerebral cortex
    • Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A., & Borrell, V. A role of intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674-1694 (2011
    • (2011) Cereb. Cortex , vol.21 , pp. 1674-1694
    • Reillo, I.1    De Juan Romero, C.2    Garcia-Cabezas, M.A.3    Borrell, V.4
  • 10
    • 77955105858 scopus 로고    scopus 로고
    • Axons pull on the brain, but tension does not drive cortical folding
    • Xu, G., et al. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132, 071013 (2010
    • (2010) J. Biomech. Eng , vol.132 , pp. 071013
    • Xu, G.1
  • 11
    • 27744508445 scopus 로고    scopus 로고
    • A morphogenetic model for the development of cortical convolutions
    • Toro, R., & Burnod, Y. A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15, 1900-1913 (2005
    • (2005) Cereb. Cortex , vol.15 , pp. 1900-1913
    • Toro, R.1    Burnod, Y.2
  • 12
    • 77951653070 scopus 로고    scopus 로고
    • A computational model of cerebral cortex folding
    • Nie, J., et al. A computational model of cerebral cortex folding. J. Theor. Biol. 264, 467-478 (2010
    • (2010) J. Theor. Biol , vol.264 , pp. 467-478
    • Nie, J.1
  • 13
    • 84904212144 scopus 로고    scopus 로고
    • A mechanical model predicts morphological abnormalities in the developing human brain
    • Budday, S., Raybaud, C., & Kuhl, E. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4, 5644 (2014
    • (2014) Sci. Rep , vol.4 , pp. 5644
    • Budday, S.1    Raybaud, C.2    Kuhl, E.3
  • 14
    • 84873386268 scopus 로고    scopus 로고
    • A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain
    • Bayly, P. V., Okamoto, R. J., Xu, G., Shi, Y., & Taber, L. A. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10, 016005 (2013
    • (2013) Phys. Biol , vol.10 , pp. 016005
    • Bayly, P.V.1    Okamoto, R.J.2    Xu, G.3    Shi, Y.4    Taber, L.A.5
  • 18
    • 84935523086 scopus 로고    scopus 로고
    • Cortical folding scales universally with surface area and thickness, not number of neurons
    • Mota, B., & Herculano-Houzel, S. Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349, 74-77 (2015
    • (2015) Science , vol.349 , pp. 74-77
    • Mota, B.1    Herculano-Houzel, S.2
  • 19
    • 84877139625 scopus 로고    scopus 로고
    • Development of cortical folding during evolution and ontogeny
    • Zilles, K., Palomero-Gallagher, N., & Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36, 275-284 (2013
    • (2013) Trends Neurosci. , vol.36 , pp. 275-284
    • Zilles, K.1    Palomero-Gallagher, N.2    Amunts, K.3
  • 20
    • 0002583095 scopus 로고
    • Why does cerebral cortex fissure and fold: A review of determinants of gyri and sulci
    • Welker, W.Why does cerebral cortex fissure and fold: a review of determinants of gyri and sulci. Cereb. Cortex 8, 3-136 (1990
    • (1990) Cereb. Cortex , vol.8 , pp. 3-136
    • Welker, W.1
  • 21
    • 0031037505 scopus 로고    scopus 로고
    • A tension based theory of morphogenesis and compact wiring in the central nervous system
    • van Essen, D. C. A tension based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313-318 (1997
    • (1997) Nature , vol.385 , pp. 313-318
    • Van Essen, D.C.1
  • 22
    • 84904311670 scopus 로고    scopus 로고
    • Diffferential tangential expansion as a mechanism for cortical gyrification
    • Ronan, L., et al. Diffferential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex 24, 2219-2228 (2014
    • (2014) Cereb. Cortex , vol.24 , pp. 2219-2228
    • Ronan, L.1
  • 23
    • 84937636052 scopus 로고    scopus 로고
    • Emerging brain morphologies from axonal elongation
    • Holland, M. A., Miller, K. E., & Kuhl, E. Emerging brain morphologies from axonal elongation. Ann. Biomed. Eng. 43, 1640-1653 (2015
    • (2015) Ann. Biomed. Eng , vol.43 , pp. 1640-1653
    • Holland, M.A.1    Miller, K.E.2    Kuhl, E.3
  • 25
    • 84888135161 scopus 로고    scopus 로고
    • Mechanical forces in cerebral cortical folding: A review of measurements and models
    • Bayly, P. V., Taber, L. A., & Kroenke, C. D. Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. 29, 568-581 (2013
    • (2013) J. Mech. Behav. Biomed , vol.29 , pp. 568-581
    • Bayly, P.V.1    Taber, L.A.2    Kroenke, C.D.3
  • 26
    • 0020378081 scopus 로고
    • A geometric model for the cortical folding pattern of simple folded brains
    • Todd, P. H. A geometric model for the cortical folding pattern of simple folded brains. J. Theor. Biol. 97, 529-538 (1982
    • (1982) J. Theor. Biol , vol.97 , pp. 529-538
    • Todd, P.H.1
  • 27
    • 84903905216 scopus 로고    scopus 로고
    • Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants
    • Meng, Y., Li, G., Lin, W., Gilmore, J. H., & Shen, D. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage 100, 206-218 (2014
    • (2014) NeuroImage , vol.100 , pp. 206-218
    • Meng, Y.1    Li, G.2    Lin, W.3    Gilmore, J.H.4    Shen, D.5
  • 28
    • 77954956491 scopus 로고    scopus 로고
    • Gyral folding pattern analysis via surface profiling
    • Li, K., et al. Gyral folding pattern analysis via surface profiling. NeuroImage 52, 1202-1214 (2010
    • (2010) NeuroImage , vol.52 , pp. 1202-1214
    • Li, K.1
  • 31
    • 84863694348 scopus 로고    scopus 로고
    • Scale and nature of sulcification patterns
    • Hohlfeld, E., & Mahadevan, L. Scale and nature of sulcification patterns. Phys. Rev. Lett. 109, 025701 (2012
    • (2012) Phys. Rev. Lett , vol.109 , pp. 025701
    • Hohlfeld, E.1    Mahadevan, L.2
  • 33
    • 58149200530 scopus 로고    scopus 로고
    • Brain size and folding of the human cerebral cortex
    • Toro, R., et al. Brain size and folding of the human cerebral cortex. Cereb. Cortex 18, 2352-2357 (2008
    • (2008) Cereb. Cortex , vol.18 , pp. 2352-2357
    • Toro, R.1
  • 34
    • 84866177898 scopus 로고    scopus 로고
    • Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism
    • Germanaud, D., et al. Larger is twistier: spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism. NeuroImage 63, 1257-1272 (2012
    • (2012) NeuroImage , vol.63 , pp. 1257-1272
    • Germanaud, D.1
  • 35
    • 84981225491 scopus 로고    scopus 로고
    • Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns?
    • Lefvre, J., et al. Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns?. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv123 (2015
    • (2015) Cereb. Cortex
    • Lefèvre, J.1
  • 36
    • 84859800695 scopus 로고    scopus 로고
    • Malformations of cortical development
    • Aronica, E., Becker, A. J., & Spreafico, R. Malformations of cortical development. Brain Pathol. 22, 380-401 (2012
    • (2012) Brain Pathol , vol.22 , pp. 380-401
    • Aronica, E.1    Becker, A.J.2    Spreafico, R.3
  • 37
    • 20144386602 scopus 로고    scopus 로고
    • A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size
    • Bond, J., et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nature Genet. 37, 353-355 (2005
    • (2005) Nature Genet , vol.37 , pp. 353-355
    • Bond, J.1
  • 38
    • 0342906570 scopus 로고    scopus 로고
    • Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations
    • Hong, S. E., et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26, 93-96 (2000
    • (2000) Nature Genet , vol.26 , pp. 93-96
    • Hong, S.E.1
  • 39
    • 84855416752 scopus 로고    scopus 로고
    • Construction of a consistent high-definition spatIofftemporal atlas of the developing brain using adaptive kernel regression
    • Serag, A., et al. Construction of a consistent high-definition spatIofftemporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59, 2255-2265 (2012
    • (2012) NeuroImage , vol.59 , pp. 2255-2265
    • Serag, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.