메뉴 건너뛰기




Volumn 9517, Issue , 2016, Pages 207-217

Automatic endmember extraction using pixel purity index for hyperspectral imagery

Author keywords

Automatic pixel purity index; Endmember extraction; Hyperspectral image; Projection vector

Indexed keywords

ALGORITHMS; COVARIANCE MATRIX; EXTRACTION; LINEAR TRANSFORMATIONS; PIXELS; REMOTE SENSING; SPECTROSCOPY;

EID: 84955246723     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-27674-8_19     Document Type: Conference Paper
Times cited : (8)

References (16)
  • 2
    • 84905903299 scopus 로고    scopus 로고
    • Spatial-spectralinformationbasedabundance-constrained endmember extraction methods
    • Xu, M., Du, B., Zhang, L.: Spatial-spectral information based abundance-constrained endmember extraction methods. IEEE Trans. Geosci. Remote Sens. 7, 2004-2015 (2014)
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.7 , pp. 2004-2015
    • Xu, M.1    Du, B.2    Zhang, L.3
  • 3
    • 84921033397 scopus 로고    scopus 로고
    • Using spatial and spectral information forimproving endmember extraction algorithms in hyperspectral remotely sensed images
    • Mashhad
    • Kowkabi, F., Ghassemian, H., Keshavarz, A.: Using spatial and spectral information for improving endmember extraction algorithms in hyperspectral remotely sensed images. In: ICCKE Conference, Mashhad, pp 548-553 (2014)
    • (2014) ICCKE Conference , pp. 548-553
    • Kowkabi, F.1    Ghassemian, H.2    Keshavarz, A.3
  • 4
    • 16444373735 scopus 로고    scopus 로고
    • Vertex componentanalysis: A fastalgorithm tounmix hyperspectral data
    • Nascimento, J.M.P., Bioucas-Dias, J.M.: Vertex component analysis: a fast algorithm tounmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43, 898-910 (2005)
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.M.2
  • 5
    • 84863055744 scopus 로고    scopus 로고
    • On the optimality of sequential forward feature selection using class separability measure
    • Adelaide
    • Wang, L., Shen, C., Hartley, R.: On the optimality of sequential forward feature selection using class separability measure. In: DICTA Conference, Adelaide, pp 203-208 (2011)
    • (2011) DICTA Conference , pp. 203-208
    • Wang, L.1    Shen, C.2    Hartley, R.3
  • 6
    • 84890439704 scopus 로고    scopus 로고
    • Atheoryofhigh-orderstatistics-basedvirtualdimensionality for hyperspectral imagery
    • Chang, C., Xiong, W., Wen, C.: A theory of high-order statistics-based virtual dimensionality for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 52, 188-208 (2014)
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 188-208
    • Chang, C.1    Xiong, W.2    Wen, C.3
  • 7
    • 84874602019 scopus 로고    scopus 로고
    • The improved N-FINDR endmember extractionalgorithmanditsapplicationintheoilanalysis
    • Hangzhou
    • Sun, Q., An, J., Song, M., Lin, B., Zhang, Y.: The improved N-FINDR endmember extraction algorithm and its application in the oil analysis. In: ICACI Conference, Hangzhou, pp 601-604 (2012)
    • (2012) Icaciconference , pp. 601-604
    • Sun, Q.1    An, J.2    Song, M.3    Lin, B.4    Zhang, Y.5
  • 8
    • 84880054014 scopus 로고    scopus 로고
    • Multidimensional pixel purity index for convex hull estimation and endmember extraction
    • Heylen, R., Scheunders, P.: Multidimensional pixel purity index for convex hull estimation and endmember extraction. IEEE Trans. Geosci. Remote Sens. 51, 4059-4069 (2013)
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 4059-4069
    • Heylen, R.1    Scheunders, P.2
  • 9
    • 84906542589 scopus 로고    scopus 로고
    • Iterative pixel purity index
    • Lausanne
    • Chang, C., Wu, C.: Iterative pixel purity index. In: WHISPERS Conference, Lausanne, pp 4 (2012)
    • (2012) WHISPERS Conference
    • Chang, C.1    Wu, C.2
  • 10
    • 84863455923 scopus 로고    scopus 로고
    • Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier
    • Hasanlou, M., Samadzadegan, F.: Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier. IEEE Trans. Geosci. Remote Sens. 9, 1046-1050 (2012)
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.9 , pp. 1046-1050
    • Hasanlou, M.1    Samadzadegan, F.2
  • 11
    • 67649780436 scopus 로고    scopus 로고
    • A novel technique for hyperspectral signal subspace estimation in target detection applications
    • Boston
    • Acito, N., Corsini, G., Diani, M.: A novel technique for hyperspectral signal subspace estimation in target detection applications. In: IGARSS Conference, Boston, pp 95-98 (2008)
    • (2008) IGARSS Conference , pp. 95-98
    • Acito, N.1    Corsini, G.2    Diani, M.3
  • 12
    • 81455155735 scopus 로고    scopus 로고
    • Support vector machine based classification for hyperspectral remote sensingimagesafterminimumnoisefractionrotationtransformation
    • Zhang, D., Yu, L.: Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation. In: ICICIS Conference, pp 132-135 (2010)
    • (2010) ICICIS Conference , pp. 132-135
    • Zhang, D.1    Yu, L.2
  • 13
    • 84955285931 scopus 로고    scopus 로고
    • Adaptivenoisevarianceidentificationfordatafusionusing subspace-based technique
    • Beijing
    • Li, Z., Chang, C.: Adaptive noise variance identification for data fusion using subspace-based technique. In: ICACC Conference, Beijing, pp 764-770 (2010)
    • (2010) ICACC Conference , pp. 764-770
    • Li, Z.1    Chang, C.2
  • 14
    • 84924189740 scopus 로고    scopus 로고
    • Improvedbandsimilarity-based hyperspectralimagerybandselectionfortargetdetection
    • 9, 095091.1-095091
    • Zhang, J., Cao, Y., Zhuo, L., Wang, C., Zhou, Q.: Improved band similarity-based hyperspectral imagery band selection for target detection. J. Appl. Remote Sens. 9, 095091.1-095091.12 (2015)
    • (2015) J.Appl.Remotesens , pp. 12
    • Zhang, J.1    Cao, Y.2    Zhuo, L.3    Wang, C.4    Zhou, Q.5
  • 16
    • 84891874869 scopus 로고    scopus 로고
    • Hyperspectral data unmixing algorithm comparative analysis based on linear spectral mixture model
    • Hangzhou
    • Cheng, B.: Hyperspectral data unmixing algorithm comparative analysis based on linear spectral mixture model. In: IHMSC Conference, Hangzhou, pp 11-14 (2013)
    • (2013) IHMSC Conference , pp. 11-14
    • Cheng, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.