메뉴 건너뛰기




Volumn 9, Issue 8, 2016, Pages 3478-3488

Change Detection Based on Conditional Random Field with Region Connection Constraints in High-Resolution Remote Sensing Images

Author keywords

Change detection; conditional random field (CRF); connected region; contextual information; fuzzy C means (FCM); high resolution (HR) remote sensing image

Indexed keywords

CLUSTERING ALGORITHMS; FUZZY CLUSTERING; FUZZY SYSTEMS; ITERATIVE METHODS; RANDOM PROCESSES;

EID: 84955091227     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2514610     Document Type: Article
Times cited : (62)

References (33)
  • 1
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • May
    • L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1171-1182, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.F.2
  • 2
    • 0036986484 scopus 로고    scopus 로고
    • Unsupervised change-detection methods for remote-sensing images
    • Dec.
    • F.Melgani, G. Moser, and S. B. Serpico, "Unsupervised change-detection methods for remote-sensing images," Opt. Eng., vol. 41, no. 12, pp. 3288-3297, Dec. 2002.
    • (2002) Opt. Eng. , vol.41 , Issue.12 , pp. 3288-3297
    • Melgani, F.1    Moser, G.2    Serpico, S.B.3
  • 3
    • 84897791877 scopus 로고    scopus 로고
    • Comparison of relative radiometric normalisation methods using pseudo-invariant features for change detection studies in rural and urban landscapes
    • N. Bao et al., "Comparison of relative radiometric normalisation methods using pseudo-invariant features for change detection studies in rural and urban landscapes," J. Appl. Remote Sens., vol. 6, pp. 1-18, 2012.
    • (2012) J. Appl. Remote Sens. , vol.6 , pp. 1-18
    • Bao, N.1
  • 4
    • 47849131596 scopus 로고    scopus 로고
    • An unsupervised technique based on morphological filters for change detection in very high resolution images
    • Jul.
    • M. Dalla Mura et al., "An unsupervised technique based on morphological filters for change detection in very high resolution images," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 433-437, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 433-437
    • Dalla Mura, M.1
  • 5
    • 0027334830 scopus 로고
    • Multispectral change vector analysis for monitoring coastal marine environments
    • J. L.Michalek et al., "Multispectral change vector analysis for monitoring coastal marine environments," Photogramm. Eng. Remote Sens., vol. 53, no. 3, pp. 381-384, 1993.
    • (1993) Photogramm. Eng. Remote Sens. , vol.53 , Issue.3 , pp. 381-384
    • Michalek, J.L.1
  • 6
    • 67949102000 scopus 로고    scopus 로고
    • Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images
    • Aug.
    • F. Bovolo, L. Bruzzone, and S. Marchesi, "Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2658-2671, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2658-2671
    • Bovolo, F.1    Bruzzone, L.2    Marchesi, S.3
  • 7
    • 80155147984 scopus 로고    scopus 로고
    • Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine
    • Nov.
    • N. B. Chang et al., "Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine," J. Appl. Remote Sens., vol. 4, no. 1, pp. 043551-1-043551-15, Nov. 2010.
    • (2010) J. Appl. Remote Sens. , vol.4 , Issue.1 , pp. 0435511-04355115
    • Chang, N.B.1
  • 8
    • 33750606343 scopus 로고    scopus 로고
    • Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics
    • Nov.
    • W. Ji et al., "Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics," Comput. Environ. Urban Syst., vol. 30, no. 6, pp. 861-879, Nov. 2006.
    • (2006) Comput. Environ. Urban Syst. , vol.30 , Issue.6 , pp. 861-879
    • Ji, W.1
  • 9
    • 78649733650 scopus 로고    scopus 로고
    • Unsupervised change detection by kernel clustering
    • Oct.
    • M. Volpi et al., "Unsupervised change detection by kernel clustering," in Proc. Remote Sens. Int. Soc. Opt. Photon., Oct. 2010, pp. 78300V-1-78300V-8.
    • (2010) Proc. Remote Sens. Int. Soc. Opt. Photon. , pp. 78300V1-78300V8
    • Volpi, M.1
  • 10
    • 0036543746 scopus 로고    scopus 로고
    • An adaptive semi-parametric and contextbased approach to unsupervised change detection in multi-temporal remote-sensing images
    • Apr.
    • L. Bruzzone and D. F. Prieto, "An adaptive semi-parametric and contextbased approach to unsupervised change detection in multi-temporal remote-sensing images," IEEE Trans. Image Process., vol. 11, no. 4, pp. 452-466, Apr. 2002.
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.4 , pp. 452-466
    • Bruzzone, L.1    Prieto, D.F.2
  • 11
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and k-Means clustering
    • Oct.
    • T. Celik, "Unsupervised change detection in satellite images using principal component analysis and k-Means clustering," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772-776, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 772-776
    • Celik, T.1
  • 12
    • 84856963339 scopus 로고    scopus 로고
    • A neighborhood-based ratio approach for change detection in SAR images
    • Mar.
    • M. Gong, Y. Cao, and Q. Wu, "A neighborhood-based ratio approach for change detection in SAR images," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 2, pp. 307-311, Mar. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.2 , pp. 307-311
    • Gong, M.1    Cao, Y.2    Wu, Q.3
  • 13
    • 1342267111 scopus 로고    scopus 로고
    • A multiscale object-specific approach to digital change detection
    • Nov.
    • O. Hall and G. J. Hay, "A multiscale object-specific approach to digital change detection," Int. J. Appl. Earth Observ. Geoinf., vol. 4, no. 4, pp. 311-327, Nov. 2003.
    • (2003) Int. J. Appl. Earth Observ. Geoinf. , vol.4 , Issue.4 , pp. 311-327
    • Hall, O.1    Hay, G.J.2
  • 14
    • 84911499747 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on non-local means with ratio similarity measurement
    • Nov.
    • L. Su,M. Gong, and B. Sun, "Change detection in synthetic aperture radar images based on non-local means with ratio similarity measurement," Int. J. Remote Sens., vol. 35, no. 22, pp. 7673-7690, Nov. 2014.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.22 , pp. 7673-7690
    • Su, L.1    Gong, M.2    Sun, B.3
  • 15
    • 84885368811 scopus 로고    scopus 로고
    • Fuzzy clustering with a modified mrf energy function for change detection in synthetic aperture radar images
    • Feb.
    • M. Gong et al., "Fuzzy clustering with a modified mrf energy function for change detection in synthetic aperture radar images," IEEE Trans. Fuzzy Syst., vol. 22, no. 1, pp. 98-109, Feb. 2014.
    • (2014) IEEE Trans. Fuzzy Syst. , vol.22 , Issue.1 , pp. 98-109
    • Gong, M.1
  • 16
    • 84890044760 scopus 로고    scopus 로고
    • Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images
    • Nov.
    • M. Hao et al., "Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images," Remote Sens. Lett., vol. 4, no. 12, pp. 1185-1194, Nov. 2013.
    • (2013) Remote Sens. Lett. , vol.4 , Issue.12 , pp. 1185-1194
    • Hao, M.1
  • 17
    • 34547491248 scopus 로고    scopus 로고
    • Unsupervised change detection in multitemporal SAR images using MRF models
    • Aug.
    • L. Jiang et al., "Unsupervised change detection in multitemporal SAR images using MRF models," Geo-spat. Inf. Sci., vol. 10, no. 2, pp. 111-116, Aug. 2012.
    • (2012) Geo-spat. Inf. Sci. , vol.10 , Issue.2 , pp. 111-116
    • Jiang, L.1
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Jun.
    • J. Lafferty, A. McCallum, and F. C. N. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. 18th Int. Conf. Mach. Learn., pp. 282-289, Jun. 2001.
    • (2001) Proc. 18th Int. Conf. Mach. Learn. , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 19
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," in Proc. 9th IEEE Int. Conf. Comput. Vis., 2003, vol. 2, pp. 1150-1157.
    • (2003) Proc. 9th IEEE Int. Conf. Comput. Vis. , vol.2 , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 20
    • 84899887971 scopus 로고    scopus 로고
    • A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery
    • Apr.
    • Y. Zhong, X. Lin, and L. Zhang, "A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1314-1330, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1314-1330
    • Zhong, Y.1    Lin, X.2    Zhang, L.3
  • 21
    • 84902120621 scopus 로고    scopus 로고
    • A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
    • Nov.
    • Y. Zhong, J. Zhao, and L. Zhang, "A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7023-7037, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7023-7037
    • Zhong, Y.1    Zhao, J.2    Zhang, L.3
  • 22
    • 84862801737 scopus 로고    scopus 로고
    • Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification
    • Sep.
    • G. Zhang and X. Jia, "Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 5, pp. 856-860, Sep. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.5 , pp. 856-860
    • Zhang, G.1    Jia, X.2
  • 23
    • 79955524368 scopus 로고    scopus 로고
    • A supervised classification method based on conditional random fields with multiscale region connection calculus model for SAR image
    • May
    • X. Su et al., "A supervised classification method based on conditional random fields with multiscale region connection calculus model for SAR image," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 497-501, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 497-501
    • Su, X.1
  • 24
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • P. Krahenbuhl and V. Koltun, "Efficient inference in fully connected CRFs with gaussian edge potentials," in Adv. Neural Inf. Process. Syst., 2011, pp. 109-117.
    • (2011) Adv. Neural Inf. Process. Syst. , pp. 109-117
    • Krahenbuhl, P.1    Koltun, V.2
  • 25
    • 0029360028 scopus 로고    scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Aug.
    • N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy c-means model," IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370-379, Aug. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 26
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul.
    • P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 27
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P.Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 29
    • 84920948047 scopus 로고    scopus 로고
    • Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery
    • May
    • J. Zhao, Y. Zhong, and L. Zhang, "Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2440-2452, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2440-2452
    • Zhao, J.1    Zhong, Y.2    Zhang, L.3
  • 30
    • 84916628367 scopus 로고    scopus 로고
    • Change detection from multi-temporal remote sensing images by integratingmultiple features
    • P. Du and S. Liu, "Change detection from multi-temporal remote sensing images by integratingmultiple features," Yaogan Xuebao-J. Remote Sens., vol. 16, no. 4, pp. 663-667, 2012.
    • (2012) Yaogan Xuebao-J. Remote Sens. , vol.16 , Issue.4 , pp. 663-667
    • Du, P.1    Liu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.