-
1
-
-
34547655997
-
-
Springer, Dordrecht, The Netherlands
-
E. Allen. 2007. Modeling with Ito Stochastic Differential Equations, Springer, Dordrecht, The Netherlands.
-
(2007)
Modeling with Ito Stochasti
-
-
Allen, E.1
-
4
-
-
84868312013
-
Extinction thresholds in deterministic and stochastic epidemic models
-
L. J. S. Allen and G. E. Lahodny Jr. 2012. Extinction thresholds in deterministic and stochastic epidemic models. J. Biol. Dyn. 6: 590-611.
-
(2012)
J. Biol. Dyn.
, vol.6
, pp. 590-611
-
-
Allen, L.J.S.1
Lahodny, G.E.2
-
5
-
-
84864845417
-
Stochastic models for competing species with a shared pathogen
-
L. J. S. Allen and V. A. Bokil. 2012. Stochastic models for competing species with a shared pathogen. Math. Biosci. Eng. 9: 461-485.
-
(2012)
Math. Biosci. Eng.
, vol.9
, pp. 461-485
-
-
Allen, L.J.S.1
Bokil, V.A.2
-
6
-
-
84875803481
-
Relations between deterministic and stochastic thresholds for disease extinction in continuous- and discrete-time infectious disease models
-
L. J. S. Allen and P. van den Driessche. 2013. Relations between deterministic and stochastic thresholds for disease extinction in continuous- and discrete-time infectious disease models. Math. Biosci. 243: 99-108.
-
(2013)
Math. Biosci.
, vol.243
, pp. 99-108
-
-
Allen, L.J.S.1
Van den Driessche, P.2
-
8
-
-
84890887686
-
On the extinction of continuous state branching processes with catastrophes
-
B. Bansaye, J. C. Pardo Millan, and C. Smadi. 2013. On the extinction of continuous state branching processes with catastrophes. Electron J. Probab 18: 1-31.
-
(2013)
Electron J. Probab
, vol.18
, pp. 1-31
-
-
Bansaye, B.1
Pardo Millan, J.C.2
Smadi, C.3
-
9
-
-
0011485892
-
The relevance of stochastic models for large-scale epidemiological phenomena
-
M. S. Bartlett. 1964. The relevance of stochastic models for large-scale epidemiological phenomena. J. Roy. Stat. Soc., Series C 13: 2-8.
-
(1964)
J. Roy. Stat. Soc., Series C
, vol.13
, pp. 2-8
-
-
Bartlett, M.S.1
-
10
-
-
0141626237
-
De la loi de multiplication et de la durée des familles
-
I. J. Bienaymé. 1845. De la loi de multiplication et de la durée des familles. Soc. Philomat. Paris 5: 37-39.
-
(1845)
Soc. Philomat. Paris
, vol.5
, pp. 37-39
-
-
Bienaymé, I.J.1
-
11
-
-
3042696403
-
Model parameters and outbreak control for SARS
-
G. Chowell, C. Castillo-Chavez, P.W. Fenimore, C. M. Kribs-Zaleta, L. Arriola and J. M. Hyman. 2004. Model parameters and outbreak control for SARS. Emerging Infectious Diseases 10: 1258-1263.
-
(2004)
Emerging Infectious Diseases
, vol.10
, pp. 1258-1263
-
-
Chowell, G.1
Castillo-Chavez, C.2
Fenimore, P.W.3
Kribs-Zaleta, C.M.4
Arriola, L.5
Hyman, J.M.6
-
12
-
-
84878084179
-
Stochastic analysis of pre- and postexposure prophylaxis against HIV infection
-
J. M. Conway, B. P. Konrad, and D. Coombs. 2013. Stochastic analysis of pre- and postexposure prophylaxis against HIV infection. SIAM J. Appl. Math. 73: 904-928.
-
(2013)
SIAM J. Appl. Math.
, vol.73
, pp. 904-928
-
-
Conway, J.M.1
Konrad, B.P.2
Coombs, D.3
-
13
-
-
0027736832
-
The estimation of the basic reproduction number for infectious diseases
-
K. Dietz. 1993. The estimation of the basic reproduction number for infectious diseases Stat. Methods Med. Res. 2: 23-41.
-
(1993)
Stat. Methods Med. Res.
, vol.2
, pp. 23-41
-
-
Dietz, K.1
-
17
-
-
33645429016
-
Exact stochastic simulation of coupled chemical reactions
-
D. T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. J. Chemical Physics 81: 2340-2361.
-
(1977)
J. Chemical Physics
, vol.81
, pp. 2340-2361
-
-
Gillespie, D.T.1
-
18
-
-
0040972073
-
A bivariate birth-death process which approximates to the spread of a disease involving a vector
-
D. A. Griffiths. 1972. A bivariate birth-death process which approximates to the spread of a disease involving a vector. J. Applied Prob. 9: 65-75.
-
(1972)
J. Applied Prob.
, vol.9
, pp. 65-75
-
-
Griffiths, D.A.1
-
19
-
-
79954677689
-
The probability of extinction in a bovine respiratory syncytial virus epidemic model
-
M. Griffiths and D. Greenhalgh. 2011. The probability of extinction in a bovine respiratory syncytial virus epidemic model. Math. Biosci. 231: 144-158.
-
(2011)
Math. Biosci.
, vol.231
, pp. 144-158
-
-
Griffiths, M.1
Greenhalgh, D.2
-
21
-
-
84925067620
-
-
Cambridge Studies in Adaptive Dynamics. Cambridge Univ. Press, Cambridge, UK
-
P. Haccou, P. Jagers, and V. A. Vatutin. 2005. Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics. Cambridge Univ. Press, Cambridge, UK.
-
(2005)
Branching Processes: Variation, Growth, and Extinction of Populations.
-
-
Haccou, P.1
Jagers, P.2
Vatutin, V.A.3
-
22
-
-
80052419729
-
Early outbreak of 2009 influenza A (H1N1) in Mexico prior to identification of pH1N1 virus
-
Y.-H. Hsieh Y-H, S. Ma, J. X. Velasco Hernandez, V. J. Lee, W. Y. Lim. 2011. Early outbreak of 2009 influenza A (H1N1) in Mexico prior to identification of pH1N1 virus. PLoS ONE 6(8): e23853. doi: 10.1371/journal.pone.0023853
-
(2011)
PLoS ONE
, vol.6
, Issue.8
, pp. e23853
-
-
Hsieh, Y.-H.1
Ma, S.2
Velasco Hernandez, J.X.3
Lee, V.J.4
Lim, W.Y.5
-
26
-
-
0002232633
-
Solutions of ordinary differential equations as limits of pure jump Markov processes
-
T. G. Kurtz. 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7: 49-58.
-
(1970)
J. Appl. Prob.
, vol.7
, pp. 49-58
-
-
Kurtz, T.G.1
-
27
-
-
0001249058
-
Limit theorems for sequences of jump Markov processes approximating ordinary differential processes
-
T. G. Kurtz. 1971. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8: 344-356.
-
(1971)
J. Appl. Prob.
, vol.8
, pp. 344-356
-
-
Kurtz, T.G.1
-
28
-
-
0001455869
-
The relationship between stochastic and deterministic models for chemical reactions
-
T. G. Kurtz. 1972. The relationship between stochastic and deterministic models for chemical reactions J. Chem. Physics 57: 2976-2978.
-
(1972)
J. Chem. Physics
, vol.57
, pp. 2976-2978
-
-
Kurtz, T.G.1
-
29
-
-
84879715009
-
Probability of a disease outbreak in stochastic multi-patch epidemic models
-
G. E. Lahodny, Jr. and L. J. S. Allen. 2013. Probability of a disease outbreak in stochastic multi-patch epidemic models. Bull. Math. Biol. 75:1157-1180.
-
(2013)
Bull. Math. Biol.
, vol.75
, pp. 1157-1180
-
-
Lahodny, G.E.1
Allen, L.J.S.2
-
31
-
-
84954594022
-
-
US Dept. of CommerceWebsite, accessed: 12/31/2014
-
National Oceanic and Atmospheric Administration. US Dept. of CommerceWebsite: http:// oceanservice.noaa.gov/facts/invasive.html (accessed: 12/31/2014).
-
-
-
-
33
-
-
84920601815
-
Modeling the Impact of Interventions on an epidemic of Ebola in Sierra Leone and Liberia
-
2014 Nov 6. Edition 2
-
C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank, and B. L. Lewis. 2014. Modeling the Impact of Interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLOS Currents Outbreaks. 2014 Nov 6. Edition 2. doi: 10.1371/currents. outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.
-
(2014)
PLOS Currents Outbreaks.
-
-
Rivers, C.M.1
Lofgren, E.T.2
Marathe, M.3
Eubank, S.4
Lewis, B.L.5
-
34
-
-
70349431283
-
Invasion dynamics in spatially heterogeneous environments
-
S. J. Schreiber and J. O. Lloyd-Smith. 2009. Invasion dynamics in spatially heterogeneous environments. Am. Nat. 174: 490-505.
-
(2009)
Am. Nat.
, vol.174
, pp. 490-505
-
-
Schreiber, S.J.1
Lloyd-Smith, J.O.2
-
36
-
-
0036845274
-
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
-
P. van den Driessche and J. Watmough. 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180: 29-48.
-
(2002)
Math. Biosci.
, vol.180
, pp. 29-48
-
-
Van den Driessche, P.1
Watmough, J.2
-
37
-
-
0030251392
-
An agenda for invasion biology
-
G. J. Vermeij. 1996. An agenda for invasion biology. Biol. Conserv. 78: 3-9.
-
(1996)
Biol. Conserv.
, vol.78
, pp. 3-9
-
-
Vermeij, G.J.1
-
38
-
-
0001236565
-
The outcome of a stochastic epidemic: A note on Bailey's paper
-
P. Whittle. 1955. The outcome of a stochastic epidemic: A note on Bailey's paper. Biometrika 42: 116-122.
-
(1955)
Biometrika
, vol.42
, pp. 116-122
-
-
Whittle, P.1
-
39
-
-
0001215246
-
On the probability of the extinction of families
-
H. W. Watson and F. Galton. 1875. On the probability of the extinction of families. J. Anthropol. Inst. 4: 138-144.
-
(1875)
J. Anthropol. Inst.
, vol.4
, pp. 138-144
-
-
Watson, H.W.1
Galton, F.2
|