-
1
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future Nature 2012, 488, 294-303 10.1038/nature11475
-
(2012)
Nature
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
2
-
-
84937198011
-
Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions
-
Du, X.; Zhao, J.; Mi, J.; Ding, Y.; Zhou, P.; Ma, B.; Zhao, J.; Song, J. Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions Nano Energy 2015, 16, 247-255 10.1016/j.nanoen.2015.06.025
-
(2015)
Nano Energy
, vol.16
, pp. 247-255
-
-
Du, X.1
Zhao, J.2
Mi, J.3
Ding, Y.4
Zhou, P.5
Ma, B.6
Zhao, J.7
Song, J.8
-
3
-
-
78449297994
-
Solar energy supply and storage for the legacy and nonlegacy worlds
-
Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds Chem. Rev. 2010, 110, 6474-6502 10.1021/cr100246c
-
(2010)
Chem. Rev.
, vol.110
, pp. 6474-6502
-
-
Cook, T.R.1
Dogutan, D.K.2
Reece, S.Y.3
Surendranath, Y.4
Teets, T.S.5
Nocera, D.G.6
-
4
-
-
84923166108
-
Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles
-
Hidalgo-Acosta, J. C.; Mendez, M. A.; Scanlon, M. D.; Vrubel, H.; Amstutz, V.; Adamiak, W.; Opallo, M.; Girault, H. H. Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles Chem. Sci. 2015, 6, 1761-1769 10.1039/C4SC02196G
-
(2015)
Chem. Sci.
, vol.6
, pp. 1761-1769
-
-
Hidalgo-Acosta, J.C.1
Mendez, M.A.2
Scanlon, M.D.3
Vrubel, H.4
Amstutz, V.5
Adamiak, W.6
Opallo, M.7
Girault, H.H.8
-
5
-
-
84949115712
-
Electrochemical activation of Cp∗ iridium complexes for electrode-driven water-oxidation catalysis
-
Thomsen, J. M.; Sheehan, S. W.; Hashmi, S. M.; Campos, J.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W. Electrochemical activation of Cp∗ iridium complexes for electrode-driven water-oxidation catalysis J. Am. Chem. Soc. 2014, 136, 13826-13834 10.1021/ja5068299
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 13826-13834
-
-
Thomsen, J.M.1
Sheehan, S.W.2
Hashmi, S.M.3
Campos, J.4
Hintermair, U.5
Crabtree, R.H.6
Brudvig, G.W.7
-
6
-
-
84982058337
-
The "best Catalyst" for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides
-
Pokhrel, R.; Goetz, M. K.; Shaner, S. E.; Wu, X.; Stahl, S. S. The "Best Catalyst" for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides J. Am. Chem. Soc. 2015, 137, 8384-8387 10.1021/jacs.5b05093
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 8384-8387
-
-
Pokhrel, R.1
Goetz, M.K.2
Shaner, S.E.3
Wu, X.4
Stahl, S.S.5
-
7
-
-
84923025230
-
Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions
-
Kuo, C. H.; Li, W.; Pahalagedara, L.; El-Sawy, A. M.; Kriz, D.; Genz, N.; Guild, C.; Ressler, T.; Suib, S. L.; He, J. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions Angew. Chem., Int. Ed. 2015, 54, 2345-2350 10.1002/anie.201407783
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 2345-2350
-
-
Kuo, C.H.1
Li, W.2
Pahalagedara, L.3
El-Sawy, A.M.4
Kriz, D.5
Genz, N.6
Guild, C.7
Ressler, T.8
Suib, S.L.9
He, J.10
-
8
-
-
84902976195
-
Water oxidation catalysis by manganese oxides: learning from evolution
-
Wiechen, M.; Najafpour, M. M.; Allakhverdiev, S. I.; Spiccia, L. Water oxidation catalysis by manganese oxides: learning from evolution Energy Environ. Sci. 2014, 7, 2203-2212 10.1039/c4ee00681j
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2203-2212
-
-
Wiechen, M.1
Najafpour, M.M.2
Allakhverdiev, S.I.3
Spiccia, L.4
-
9
-
-
84941139832
-
2 spontaneously coated on carbon nanotubes for enhanced water oxidation
-
2 spontaneously coated on carbon nanotubes for enhanced water oxidation Chem. Commun. 2014, 50, 11938-11941 10.1039/C4CC04846F
-
(2014)
Chem. Commun.
, vol.50
, pp. 11938-11941
-
-
Wei, J.1
Liu, Y.2
Ding, Y.3
Luo, C.4
Du, X.5
Lin, J.6
-
10
-
-
84924935782
-
Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites
-
Elmaci, G.; Frey, C. E.; Kurz, P.; Zumreoglu-Karan, B. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites Inorg. Chem. 2015, 54, 2734-2741 10.1021/ic502908w
-
(2015)
Inorg. Chem.
, vol.54
, pp. 2734-2741
-
-
Elmaci, G.1
Frey, C.E.2
Kurz, P.3
Zumreoglu-Karan, B.4
-
12
-
-
84874882943
-
Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis
-
Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis J. Am. Chem. Soc. 2013, 135, 3494-3501 10.1021/ja310286h
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 3494-3501
-
-
Robinson, D.M.1
Go, Y.B.2
Mui, M.3
Gardner, G.4
Zhang, Z.5
Mastrogiovanni, D.6
Garfunkel, E.7
Li, J.8
Greenblatt, M.9
Dismukes, G.C.10
-
13
-
-
84906096303
-
2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media
-
2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media J. Am. Chem. Soc. 2014, 136, 11452-11464 10.1021/ja505186m
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 11452-11464
-
-
Meng, Y.1
Song, W.2
Huang, H.3
Ren, Z.4
Chen, S.Y.5
Suib, S.L.6
-
14
-
-
84930640307
-
4
-
4 ACS Catal. 2015, 5, 3403-3410 10.1021/acscatal.5b00265
-
(2015)
ACS Catal.
, vol.5
, pp. 3403-3410
-
-
Cady, C.W.1
Gardner, G.2
Maron, Z.O.3
Retuerto, M.4
Go, Y.B.5
Segan, S.6
Greenblatt, M.7
Dismukes, G.C.8
-
15
-
-
84979902289
-
Influence of Redox-Inactive Cations on the Structure and Electrochemical Reactivity of Synthetic Birnessite, a Heterogeneous Analog for the Oxygen-Evolving Complex
-
Baricuatro, J. H.; Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; Kim, Y.-G.; Soriaga, M. P. Influence of Redox-Inactive Cations on the Structure and Electrochemical Reactivity of Synthetic Birnessite, a Heterogeneous Analog for the Oxygen-Evolving Complex J. Phys. Chem. C 2015, 10.1021/acs.jpcc.5b07028
-
(2015)
J. Phys. Chem. C
-
-
Baricuatro, J.H.1
Saadi, F.H.2
Carim, A.I.3
Velazquez, J.M.4
Kim, Y.-G.5
Soriaga, M.P.6
-
17
-
-
84942115585
-
Visible light promoted photocatalytic water oxidation: effect of metal oxide catalyst composition and light intensity
-
Walsh, D.; Sanchez-Ballester, N. M.; Ting, V. P.; Hall, S. R.; Terry, L. R.; Weller, M. T. Visible light promoted photocatalytic water oxidation: effect of metal oxide catalyst composition and light intensity Catal. Sci. Technol. 2015, 5, 4760-4764 10.1039/C5CY01203A
-
(2015)
Catal. Sci. Technol.
, vol.5
, pp. 4760-4764
-
-
Walsh, D.1
Sanchez-Ballester, N.M.2
Ting, V.P.3
Hall, S.R.4
Terry, L.R.5
Weller, M.T.6
-
18
-
-
84928027509
-
Ferromagnetic nanocrystallines containing copper as an efficient catalyst for photoinduced water oxidation
-
Du, X.; Ding, Y.; Xiang, R.; Xiang, X. Ferromagnetic nanocrystallines containing copper as an efficient catalyst for photoinduced water oxidation Phys. Chem. Chem. Phys. 2015, 17, 10648-10655 10.1039/C5CP00688K
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 10648-10655
-
-
Du, X.1
Ding, Y.2
Xiang, R.3
Xiang, X.4
-
19
-
-
84982056745
-
Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides
-
Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeisser, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides J. Am. Chem. Soc. 2014, 136, 17530-17536 10.1021/ja509348t
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 17530-17536
-
-
Indra, A.1
Menezes, P.W.2
Sahraie, N.R.3
Bergmann, A.4
Das, C.5
Tallarida, M.6
Schmeisser, D.7
Strasser, P.8
Driess, M.9
-
20
-
-
84929192326
-
4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction
-
4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction Nanoscale 2015, 7, 8920-8930 10.1039/C4NR07243J
-
(2015)
Nanoscale
, vol.7
, pp. 8920-8930
-
-
Li, M.1
Xiong, Y.2
Liu, X.3
Bo, X.4
Zhang, Y.5
Han, C.6
Guo, L.7
-
22
-
-
84940497242
-
x Electrocatalyst on Carbon Paper for Water Oxidation
-
x Electrocatalyst on Carbon Paper for Water Oxidation J. Phys. Chem. C 2015, 119, 19573-19583 10.1021/acs.jpcc.5b02685
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 19573-19583
-
-
Wang, D.1
Zhou, J.2
Hu, Y.3
Yang, J.4
Han, N.5
Li, Y.6
Sham, T.-K.7
-
23
-
-
84948431313
-
3 and FeOOH: A high performance photoanode for water oxidation
-
3 and FeOOH: A high performance photoanode for water oxidation J. Catal. 2016, 333, 200-206 10.1016/j.jcat.2015.11.003
-
(2016)
J. Catal.
, vol.333
, pp. 200-206
-
-
Huang, J.1
Ding, Y.2
Luo, X.3
Feng, Y.4
-
24
-
-
84926309062
-
In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts
-
Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts J. Am. Chem. Soc. 2015, 137, 4223-4229 10.1021/jacs.5b01006
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 4223-4229
-
-
Hutchings, G.S.1
Zhang, Y.2
Li, J.3
Yonemoto, B.T.4
Zhou, X.5
Zhu, K.6
Jiao, F.7
-
25
-
-
84982719308
-
Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides
-
Liu, H.; Zhou, Y.; Moré, R.; Müller, R.; Fox, T.; Patzke, G. R. Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides ACS Catal. 2015, 5, 3791-3800 10.1021/acscatal.5b00078
-
(2015)
ACS Catal.
, vol.5
, pp. 3791-3800
-
-
Liu, H.1
Zhou, Y.2
Moré, R.3
Müller, R.4
Fox, T.5
Patzke, G.R.6
-
26
-
-
84870937100
-
Effect of the Support on the Photocatalytic Water Oxidation Activity of Cobalt Oxide Nanoclusters
-
Yusuf, S.; Jiao, F. Effect of the Support on the Photocatalytic Water Oxidation Activity of Cobalt Oxide Nanoclusters ACS Catal. 2012, 2, 2753-2760 10.1021/cs300581k
-
(2012)
ACS Catal.
, vol.2
, pp. 2753-2760
-
-
Yusuf, S.1
Jiao, F.2
-
27
-
-
84896977022
-
Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
-
Zhang, M.; de Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst Nat. Chem. 2014, 6, 362-367 10.1038/nchem.1874
-
(2014)
Nat. Chem.
, vol.6
, pp. 362-367
-
-
Zhang, M.1
De Respinis, M.2
Frei, H.3
-
28
-
-
84863393354
-
Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water
-
Gardner, G. P.; Go, Y. B.; Robinson, D. M.; Smith, P. F.; Hadermann, J.; Abakumov, A.; Greenblatt, M.; Dismukes, G. C. Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water Angew. Chem., Int. Ed. 2012, 51, 1616-1619 10.1002/anie.201107625
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 1616-1619
-
-
Gardner, G.P.1
Go, Y.B.2
Robinson, D.M.3
Smith, P.F.4
Hadermann, J.5
Abakumov, A.6
Greenblatt, M.7
Dismukes, G.C.8
-
29
-
-
84982322407
-
4: New Optimization Strategies
-
4: New Optimization Strategies Chem.-Asian J. 2014, 9, 2249-2259 10.1002/asia.201400140
-
(2014)
Chem. - Asian J.
, vol.9
, pp. 2249-2259
-
-
Liu, H.1
Patzke, G.R.2
-
30
-
-
84925234660
-
Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis
-
Risch, M.; Ringleb, F.; Kohlhoff, M.; Bogdanoff, P.; Chernev, P.; Zaharieva, I.; Dau, H. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis Energy Environ. Sci. 2015, 8, 661-674 10.1039/C4EE03004D
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 661-674
-
-
Risch, M.1
Ringleb, F.2
Kohlhoff, M.3
Bogdanoff, P.4
Chernev, P.5
Zaharieva, I.6
Dau, H.7
-
31
-
-
84982747147
-
High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity
-
Menezes, P. W.; Indra, A.; González-Flores, D.; Sahraie, N. R.; Zaharieva, I.; Schwarze, M.; Strasser, P.; Dau, H.; Driess, M. High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity ACS Catal. 2015, 5, 2017-2027 10.1021/cs501724v
-
(2015)
ACS Catal.
, vol.5
, pp. 2017-2027
-
-
Menezes, P.W.1
Indra, A.2
González-Flores, D.3
Sahraie, N.R.4
Zaharieva, I.5
Schwarze, M.6
Strasser, P.7
Dau, H.8
Driess, M.9
-
32
-
-
84859369650
-
3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate
-
3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate Phys. Chem. Chem. Phys. 2012, 14, 5753-5760 10.1039/c2cp00022a
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 5753-5760
-
-
Yamada, Y.1
Yano, K.2
Hong, D.3
Fukuzumi, S.4
-
33
-
-
84922762662
-
4/Porous Silica Nanocomposites
-
4/Porous Silica Nanocomposites ACS Catal. 2015, 5, 1037-1044 10.1021/cs501650j
-
(2015)
ACS Catal.
, vol.5
, pp. 1037-1044
-
-
Lin, C.-C.1
Guo, Y.2
Vela, J.3
-
34
-
-
84946400726
-
4(M = Co, Mn, Fe) porous nanocages derived from metal-organic frameworks as efficient water oxidation catalysts
-
4(M = Co, Mn, Fe) porous nanocages derived from metal-organic frameworks as efficient water oxidation catalysts J. Mater. Chem. A 2015, 3, 22300-22310 10.1039/C5TA06411B
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 22300-22310
-
-
Wei, J.1
Feng, Y.2
Liu, Y.3
Ding, Y.4
-
35
-
-
84911915879
-
4 nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation
-
4 nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation J. Mater. Chem. A 2014, 2, 20823-20831 10.1039/C4TA05315J
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 20823-20831
-
-
Yu, X.1
Sun, Z.2
Yan, Z.3
Xiang, B.4
Liu, X.5
Du, P.6
-
37
-
-
84876532382
-
4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst
-
4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst J. Mater. Chem. A 2013, 1, 4754-4762 10.1039/c3ta01402a
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4754-4762
-
-
Lee, D.U.1
Kim, B.J.2
Chen, Z.3
-
38
-
-
84934273774
-
4 Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electrocatalytic Performance
-
4 Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electrocatalytic Performance J. Phys. Chem. C 2014, 118, 25939-25946 10.1021/jp508977j
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 25939-25946
-
-
Shi, H.1
Zhao, G.2
-
39
-
-
84908452691
-
3@NiO core-shell nanostructured photocatalysts for water oxidation
-
3@NiO core-shell nanostructured photocatalysts for water oxidation Chem.-Asian J. 2014, 9, 2745-2750 10.1002/asia.201402652
-
(2014)
Chem. - Asian J.
, vol.9
, pp. 2745-2750
-
-
Du, X.1
Wei, J.2
Zhao, J.3
Han, R.4
Ding, Y.5
-
40
-
-
84947433310
-
2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting
-
2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting J. Am. Chem. Soc. 2015, 137, 14023-14026 10.1021/jacs.5b08186
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 14023-14026
-
-
Feng, L.-L.1
Yu, G.2
Wu, Y.3
Li, G.-D.4
Li, H.5
Sun, Y.6
Asefa, T.7
Chen, W.8
Zou, X.9
-
41
-
-
84899018037
-
Electrocatalytic water oxidation by a monomeric amidate-ligated Fe(III)-aqua complex
-
Coggins, M. K.; Zhang, M. T.; Vannucci, A. K.; Dares, C. J.; Meyer, T. J. Electrocatalytic water oxidation by a monomeric amidate-ligated Fe(III)-aqua complex J. Am. Chem. Soc. 2014, 136, 5531-5534 10.1021/ja412822u
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5531-5534
-
-
Coggins, M.K.1
Zhang, M.T.2
Vannucci, A.K.3
Dares, C.J.4
Meyer, T.J.5
-
43
-
-
84920956085
-
Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction
-
Ledendecker, M.; Clavel, G.; Antonietti, M.; Shalom, M. Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction Adv. Funct. Mater. 2015, 25, 393-399 10.1002/adfm.201402078
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 393-399
-
-
Ledendecker, M.1
Clavel, G.2
Antonietti, M.3
Shalom, M.4
-
44
-
-
84865725543
-
Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control
-
Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control J. Am. Chem. Soc. 2012, 134, 14345-14348 10.1021/ja306869j
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 14345-14348
-
-
Kuo, C.H.1
Tang, Y.2
Chou, L.Y.3
Sneed, B.T.4
Brodsky, C.N.5
Zhao, Z.6
Tsung, C.K.7
-
45
-
-
84864375367
-
Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers
-
Hu, M.; Belik, A. A.; Imura, M.; Mibu, K.; Tsujimoto, Y.; Yamauchi, Y. Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers Chem. Mater. 2012, 24, 2698-2707 10.1021/cm300615s
-
(2012)
Chem. Mater.
, vol.24
, pp. 2698-2707
-
-
Hu, M.1
Belik, A.A.2
Imura, M.3
Mibu, K.4
Tsujimoto, Y.5
Yamauchi, Y.6
-
46
-
-
84911937989
-
4 nanocubes from metal-organic frameworks with extraordinary lithium storage
-
4 nanocubes from metal-organic frameworks with extraordinary lithium storage Nanoscale 2014, 6, 15168-15174 10.1039/C4NR04422C
-
(2014)
Nanoscale
, vol.6
, pp. 15168-15174
-
-
Guo, H.1
Li, T.2
Chen, W.3
Liu, L.4
Yang, X.5
Wang, Y.6
Guo, Y.7
-
47
-
-
84922162440
-
4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries
-
4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries J. Mater. Chem. A 2015, 3, 2815-2824 10.1039/C4TA06150K
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 2815-2824
-
-
Zheng, F.1
Zhu, D.2
Shi, X.3
Chen, Q.4
-
48
-
-
84863287502
-
4(M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries
-
4(M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries Chem. Mater. 2012, 24, 720-725 10.1021/cm2036794
-
(2012)
Chem. Mater.
, vol.24
, pp. 720-725
-
-
Kim, H.1
Seo, D.-H.2
Kim, H.3
Park, I.4
Hong, J.5
Park, K.-Y.6
Kang, K.7
-
49
-
-
84920837328
-
Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
-
Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions ChemSusChem 2015, 8, 164-171 10.1002/cssc.201402699
-
(2015)
ChemSusChem
, vol.8
, pp. 164-171
-
-
Menezes, P.W.1
Indra, A.2
Sahraie, N.R.3
Bergmann, A.4
Strasser, P.5
Driess, M.6
-
50
-
-
84982719956
-
Using nickel manganese oxide catalysts for efficient water oxidation
-
Menezes, P. W.; Indra, A.; Levy, O.; Kailasam, K.; Gutkin, V.; Pfrommer, J.; Driess, M. Using nickel manganese oxide catalysts for efficient water oxidation Chem. Commun. 2015, 51, 5005-5008 10.1039/C4CC09671A
-
(2015)
Chem. Commun.
, vol.51
, pp. 5005-5008
-
-
Menezes, P.W.1
Indra, A.2
Levy, O.3
Kailasam, K.4
Gutkin, V.5
Pfrommer, J.6
Driess, M.7
-
52
-
-
84907857931
-
Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges
-
Deng, X.; Tüysüz, H. Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges ACS Catal. 2014, 4, 3701-3714 10.1021/cs500713d
-
(2014)
ACS Catal.
, vol.4
, pp. 3701-3714
-
-
Deng, X.1
Tüysüz, H.2
-
53
-
-
78449237363
-
The Mechanism of Water Oxidation: from Electrolysis via Homogeneous to Biological Catalysis
-
Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis ChemCatChem 2010, 2, 724-761 10.1002/cctc.201000126
-
(2010)
ChemCatChem
, vol.2
, pp. 724-761
-
-
Dau, H.1
Limberg, C.2
Reier, T.3
Risch, M.4
Roggan, S.5
Strasser, P.6
-
55
-
-
84875475392
-
Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst
-
Rosen, J.; Hutchings, G. S.; Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst J. Am. Chem. Soc. 2013, 135, 4516-4521 10.1021/ja400555q
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4516-4521
-
-
Rosen, J.1
Hutchings, G.S.2
Jiao, F.3
-
56
-
-
84859990754
-
Structure-activity correlations in a nickel-borate oxygen evolution catalyst
-
Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst J. Am. Chem. Soc. 2012, 134, 6801-6809 10.1021/ja301018q
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 6801-6809
-
-
Bediako, D.K.1
Lassalle-Kaiser, B.2
Surendranath, Y.3
Yano, J.4
Yachandra, V.K.5
Nocera, D.G.6
-
57
-
-
84900792458
-
Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst
-
Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst J. Am. Chem. Soc. 2014, 136, 7077-7084 10.1021/ja502128j
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7077-7084
-
-
Gao, M.1
Sheng, W.2
Zhuang, Z.3
Fang, Q.4
Gu, S.5
Jiang, J.6
Yan, Y.7
|