메뉴 건너뛰기




Volumn 121, Issue , 2016, Pages 385-392

An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs

Author keywords

Arid region; Evapotranspiration; Extreme learning machine; Least square support vector machine; Limited data

Indexed keywords

ALGORITHMS; ARID REGIONS; ARTIFICIAL INTELLIGENCE; CROPS; EFFICIENCY; ERROR STATISTICS; EVAPOTRANSPIRATION; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84954489395     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2016.01.016     Document Type: Article
Times cited : (109)

References (45)
  • 1
    • 84906777236 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N., Shrivastava N.A., Panigrahi B.K., Mohanty U.C. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2014, 43:1303-1310. 10.1007/s00382-013-1942-2.
    • (2014) Clim. Dyn. , vol.43 , pp. 1303-1310
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.K.3    Mohanty, U.C.4
  • 2
    • 34547728744 scopus 로고    scopus 로고
    • Discussion of "Generalized regression neural networks for evapotranspiration modelling"
    • Aksoy H., Guven A., Aytek A., Yuce M.I., Unal N.E. Discussion of "Generalized regression neural networks for evapotranspiration modelling". Hydrol. Sci. J. 2007, 52:825-831. 10.1623/hysj.52.4.825.
    • (2007) Hydrol. Sci. J. , vol.52 , pp. 825-831
    • Aksoy, H.1    Guven, A.2    Aytek, A.3    Yuce, M.I.4    Unal, N.E.5
  • 4
    • 52649094242 scopus 로고    scopus 로고
    • An explicit neural network formulation for evapotranspiration
    • Aytek A., Guven A., Yuce M.I., Aksoy H. An explicit neural network formulation for evapotranspiration. Hydrol. Sci. J. 2008, 53:893-904. 10.1623/hysj.53.4.893.
    • (2008) Hydrol. Sci. J. , vol.53 , pp. 893-904
    • Aytek, A.1    Guven, A.2    Yuce, M.I.3    Aksoy, H.4
  • 5
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S., Shrivastava R.K. Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour. Manage. 2008, 23:825-837. 10.1007/s11269-008-9301-5.
    • (2008) Water Resour. Manage. , vol.23 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 6
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
    • Deo R.C., Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525. 10.1016/j.atmosres.2014.10.016.
    • (2015) Atmos. Res. , vol.153 , pp. 512-525
    • Deo, R.C.1    Şahin, M.2
  • 7
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang Guang-Bin, Zhou Hongming, Ding Xiaojian, Zhang Rui Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man. Cybern. Part B 2012, 42:513-529. 10.1109/TSMCB.2011.2168604.
    • (2012) IEEE Trans. Syst. Man. Cybern. Part B , vol.42 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 8
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden layer feedforward networks
    • Huang G.-B. Learning capability and storage capacity of two-hidden layer feedforward networks. IEEE Trans. Neural Network 2003, 14:274-281.
    • (2003) IEEE Trans. Neural Network , vol.14 , pp. 274-281
    • Huang, G.-B.1
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501. 10.1016/j.neucom.2005.12.126.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 11
    • 84857220245 scopus 로고    scopus 로고
    • Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique
    • Karimaldini F., Shui L. Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique. J. Irrig. Drain. Eng. 2012, 138:21-34. 10.1061/(ASCE)IR.1943-4774.0000343.
    • (2012) J. Irrig. Drain. Eng. , vol.138 , pp. 21-34
    • Karimaldini, F.1    Shui, L.2
  • 12
    • 39649125438 scopus 로고    scopus 로고
    • Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
    • Khoob A.Rahimi Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig. Sci. 2007, 26:253-259. 10.1007/s00271-007-0090-z.
    • (2007) Irrig. Sci. , vol.26 , pp. 253-259
    • Khoob, A.R.1
  • 13
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S., Kim H.S. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. Hydrol. 2008, 351:299-317. 10.1016/j.jhydrol.2007.12.014.
    • (2008) J. Hydrol. , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 14
    • 84879221930 scopus 로고    scopus 로고
    • Least squares support vector machine for modeling daily reference evapotranspiration
    • Kisi O. Least squares support vector machine for modeling daily reference evapotranspiration. Irrig. Sci. 2013, 31:611-619. 10.1007/s00271-012-0336-2.
    • (2013) Irrig. Sci. , vol.31 , pp. 611-619
    • Kisi, O.1
  • 15
    • 80555135962 scopus 로고    scopus 로고
    • Modeling reference evapotranspiration using evolutionary neural networks
    • Kisi O. Modeling reference evapotranspiration using evolutionary neural networks. J. Irrig. Drain. Eng. 2011, 137:636-643. 10.1061/(ASCE)IR.1943-4774.0000333.
    • (2011) J. Irrig. Drain. Eng. , vol.137 , pp. 636-643
    • Kisi, O.1
  • 16
    • 67849114055 scopus 로고    scopus 로고
    • Modeling monthly evaporation using two different neural computing techniques
    • Kisi O. Modeling monthly evaporation using two different neural computing techniques. Irrig. Sci. 2009, 27:417-430. 10.1007/s00271-009-0158-z.
    • (2009) Irrig. Sci. , vol.27 , pp. 417-430
    • Kisi, O.1
  • 17
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modelling
    • Kisi O. Generalized regression neural networks for evapotranspiration modelling. Hydrol. Sci. J. 2006, 51:1092-1105. 10.1623/hysj.51.6.1092.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 1092-1105
    • Kisi, O.1
  • 18
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de "support vector machines"
    • Kisi O., Cimen M. Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de "support vector machines". Hydrol. Sci. J. 2009, 54:918-928. 10.1623/hysj.54.5.918.
    • (2009) Hydrol. Sci. J. , vol.54 , pp. 918-928
    • Kisi, O.1    Cimen, M.2
  • 19
    • 50249103269 scopus 로고    scopus 로고
    • Comparative study of conventional and artificial neural network-based ETo estimation models
    • Kumar M., Bandyopadhyay A., Raghuwanshi N.S., Singh R. Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig. Sci. 2008, 26:531-545. 10.1007/s00271-008-0114-3.
    • (2008) Irrig. Sci. , vol.26 , pp. 531-545
    • Kumar, M.1    Bandyopadhyay, A.2    Raghuwanshi, N.S.3    Singh, R.4
  • 20
    • 78650734426 scopus 로고    scopus 로고
    • Artificial neural networks approach in evapotranspiration modeling: a review
    • Kumar M., Raghuwanshi N.S., Singh R. Artificial neural networks approach in evapotranspiration modeling: a review. Irrig. Sci. 2010, 29:11-25. 10.1007/s00271-010-0230-8.
    • (2010) Irrig. Sci. , vol.29 , pp. 11-25
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 21
    • 58549086361 scopus 로고    scopus 로고
    • Development and validation of GANN model for evapotranspiration estimation
    • Kumar M., Raghuwanshi N.S., Singh R. Development and validation of GANN model for evapotranspiration estimation. J. Hydrol. Eng. 2009, 14:131-140. 10.1061/(ASCE)1084-0699(2009) 14:2(131).
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 131-140
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 23
    • 42049121124 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
    • Landeras G., Ortiz-Barredo A., López J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manage. 2008, 95:553-565. 10.1016/j.agwat.2007.12.011.
    • (2008) Agric. Water Manage. , vol.95 , pp. 553-565
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 24
    • 33748663314 scopus 로고    scopus 로고
    • Testing evapotranspiration equations using lysimeter observations in a semiarid climate
    • López-Urrea R., de Santa Martín, Olalla F., Fabeiro C., Moratalla a. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric. Water Manage. 2006, 85:15-26. 10.1016/j.agwat.2006.03.014.
    • (2006) Agric. Water Manage. , vol.85 , pp. 15-26
    • López-Urrea, R.1    de Santa, Martín2    Olalla, F.3    Fabeiro, C.4    Moratalla, A.5
  • 25
    • 80053999847 scopus 로고    scopus 로고
    • Reference evapotranspiration estimation without local climatic data
    • Martí P., González-Altozano P., Gasque M. Reference evapotranspiration estimation without local climatic data. Irrig. Sci. 2010, 29:479-495. 10.1007/s00271-010-0243-3.
    • (2010) Irrig. Sci. , vol.29 , pp. 479-495
    • Martí, P.1    González-Altozano, P.2    Gasque, M.3
  • 26
    • 84911361439 scopus 로고    scopus 로고
    • Modeling reference evapotranspiration with calculated targets. Assessment and implications
    • Martí P., González-Altozano P., López-Urrea R., Mancha L.A., Shiri J. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric. Water Manage. 2015, 149:81-90. 10.1016/j.agwat.2014.10.028.
    • (2015) Agric. Water Manage. , vol.149 , pp. 81-90
    • Martí, P.1    González-Altozano, P.2    López-Urrea, R.3    Mancha, L.A.4    Shiri, J.5
  • 27
  • 28
    • 33646685417 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration equations across a range of Indian climates
    • Nandagiri L., Kovoor G.M. Performance evaluation of reference evapotranspiration equations across a range of Indian climates. J. Irrig. Drain. Eng. 2006, 132:238-249. 10.1061/(ASCE)0733-9437(2006) 132:3(238).
    • (2006) J. Irrig. Drain. Eng. , vol.132 , pp. 238-249
    • Nandagiri, L.1    Kovoor, G.M.2
  • 29
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kişi Ö. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342:199-212. 10.1016/j.jhydrol.2007.05.026.
    • (2007) J. Hydrol. , vol.342 , pp. 199-212
    • Partal, T.1    Kişi, Ö.2
  • 30
    • 84874302517 scopus 로고    scopus 로고
    • Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
    • Pour-Ali Baba A., Shiri J., Kisi O., Fard A.F., Kim S., Amini R. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrol. Res. 2013, 44:131. 10.2166/nh.2012.074.
    • (2013) Hydrol. Res. , vol.44 , pp. 131
    • Pour-Ali Baba, A.1    Shiri, J.2    Kisi, O.3    Fard, A.F.4    Kim, S.5    Amini, R.6
  • 31
    • 77953810978 scopus 로고    scopus 로고
    • Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran
    • Rahimikhoob A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor. Appl. Climatol. 2010, 101:83-91. 10.1007/s00704-009-0204-z.
    • (2010) Theor. Appl. Climatol. , vol.101 , pp. 83-91
    • Rahimikhoob, A.1
  • 32
    • 84892552548 scopus 로고    scopus 로고
    • Application of extreme learning machine for estimating solar radiation from satellite data
    • Şahin M., Kaya Y., Uyar M., Yildirim S. Application of extreme learning machine for estimating solar radiation from satellite data. Int. J. Energy Res. 2014, 38:205-212. 10.1002/er.3030.
    • (2014) Int. J. Energy Res. , vol.38 , pp. 205-212
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3    Yildirim, S.4
  • 33
    • 84926613397 scopus 로고    scopus 로고
    • Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k -fold testing
    • Shiri J., Marti P., Nazemi A.H., Sadraddini A.A., Kisi O., Landeras G., Fard A.Fakheri Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k -fold testing. Hydrol. Res. 2015, 46:72. 10.2166/nh.2013.112.
    • (2015) Hydrol. Res. , vol.46 , pp. 72
    • Shiri, J.1    Marti, P.2    Nazemi, A.H.3    Sadraddini, A.A.4    Kisi, O.5    Landeras, G.6    Fard, A.F.7
  • 34
    • 84891740394 scopus 로고    scopus 로고
    • Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning
    • Shiri J., Marti P., Singh V.P. Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning. Hydrol. Process. 2014, 28:1215-1225. 10.1002/hyp.9669.
    • (2014) Hydrol. Process. , vol.28 , pp. 1215-1225
    • Shiri, J.1    Marti, P.2    Singh, V.P.3
  • 35
    • 84908091793 scopus 로고    scopus 로고
    • Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran
    • Shiri J., Nazemi A.H., Sadraddini A.A., Landeras G., Kisi O., Fard A.Fakheri, Marti P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108:230-241. 10.1016/j.compag.2014.08.007.
    • (2014) Comput. Electron. Agric. , vol.108 , pp. 230-241
    • Shiri, J.1    Nazemi, A.H.2    Sadraddini, A.A.3    Landeras, G.4    Kisi, O.5    Fard, A.F.6    Marti, P.7
  • 36
    • 84872667310 scopus 로고    scopus 로고
    • Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration
    • Shiri J., Nazemi A.H., Sadraddini A.A., Landeras G., Kisi O., Fard A.F., Marti P. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J. Hydrol. 2013, 480:46-57. 10.1016/j.jhydrol.2012.12.006.
    • (2013) J. Hydrol. , vol.480 , pp. 46-57
    • Shiri, J.1    Nazemi, A.H.2    Sadraddini, A.A.3    Landeras, G.4    Kisi, O.5    Fard, A.F.6    Marti, P.7
  • 37
    • 84887594278 scopus 로고    scopus 로고
    • Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran
    • Shiri J., Sadraddini A.A., Nazemi A.H., Kisi O., Landeras G., Fard A.Fakheri, Marti P. Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. J. Hydrol. 2014, 508:1-11. 10.1016/j.jhydrol.2013.10.034.
    • (2014) J. Hydrol. , vol.508 , pp. 1-11
    • Shiri, J.1    Sadraddini, A.A.2    Nazemi, A.H.3    Kisi, O.4    Landeras, G.5    Fard, A.F.6    Marti, P.7
  • 38
    • 84938652008 scopus 로고    scopus 로고
    • Independent testing for assessing the calibration of the Hargreaves-Samani equation: new heuristic alternatives for Iran
    • Shiri J., Sadraddini A.A., Nazemi A.H., Marti P., Fard A.Fakheri, Kisi O., Landeras G. Independent testing for assessing the calibration of the Hargreaves-Samani equation: new heuristic alternatives for Iran. Comput. Electron. Agric. 2015, 117:70-80. 10.1016/j.compag.2015.07.010.
    • (2015) Comput. Electron. Agric. , vol.117 , pp. 70-80
    • Shiri, J.1    Sadraddini, A.A.2    Nazemi, A.H.3    Marti, P.4    Fard, A.F.5    Kisi, O.6    Landeras, G.7
  • 39
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. Irrig. Drain. Eng. 2003, 129:214-218. 10.1061/(ASCE)0733-9437(2003) 129:3(214).
    • (2003) J. Irrig. Drain. Eng. , vol.129 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 40
    • 84880729160 scopus 로고    scopus 로고
    • Multilayer perceptron for reference evapotranspiration estimation in a semiarid region
    • Tabari H., Talaee P.Hosseinzadeh Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput. Appl. 2012, 23:341-348. 10.1007/s00521-012-0904-7.
    • (2012) Neural Comput. Appl. , vol.23 , pp. 341-348
    • Tabari, H.1    Talaee, P.H.2
  • 41
    • 84861225166 scopus 로고    scopus 로고
    • SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment
    • Tabari H., Kisi O., Ezani A., Talaee P.Hosseinzadeh SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444-445:78-89. 10.1016/j.jhydrol.2012.04.007.
    • (2012) J. Hydrol. , pp. 78-89
    • Tabari, H.1    Kisi, O.2    Ezani, A.3    Talaee, P.H.4
  • 42
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • Tamura S.I., Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans. Neural Network 1997, 8:251-255.
    • (1997) IEEE Trans. Neural Network , vol.8 , pp. 251-255
    • Tamura, S.I.1    Tateishi, M.2
  • 43
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Wang Y., Cao F., Yuan Y. A study on effectiveness of extreme learning machine. Neurocomputing 2011, 74:2483-2490. 10.1016/j.neucom.2010.11.030.
    • (2011) Neurocomputing , vol.74 , pp. 2483-2490
    • Wang, Y.1    Cao, F.2    Yuan, Y.3
  • 44
    • 84929959967 scopus 로고    scopus 로고
    • Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
    • Wen X., Si J., He Z., Wu J., Shao H., Yu H. Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour. Manage. 2015, 29:3195-3209. 10.1007/s11269-015-0990-2.
    • (2015) Water Resour. Manage. , vol.29 , pp. 3195-3209
    • Wen, X.1    Si, J.2    He, Z.3    Wu, J.4    Shao, H.5    Yu, H.6
  • 45
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti S.S., Sousa E.F., Oliveira V.P., Almeida F.T., Bernardo S. Estimating evapotranspiration using artificial neural network and minimum climatological data. J. Irrig. Drain. Eng. 2007, 133:83-89. 10.1061/(ASCE)0733-9437(2007)133:2(83).
    • (2007) J. Irrig. Drain. Eng. , vol.133 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.3    Almeida, F.T.4    Bernardo, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.