-
1
-
-
0041411652
-
Existence of (Formula presented.)-matrix approximants to the inverse FE-matrix of elliptic operators with (Formula presented.)-coefficients
-
Bebendorf, M., Hackbusch, W.: Existence of (Formula presented.)H-matrix approximants to the inverse FE-matrix of elliptic operators with (Formula presented.)-coefficients. Numer. Math. 95, 1–28 (2003)
-
(2003)
Numer. Math.
, vol.95
, pp. 1-28
-
-
Bebendorf, M.1
Hackbusch, W.2
-
2
-
-
0033471602
-
Computing the singular value decomposition with high relative accuracy
-
Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Alg. Appl 299, 21–80 (1999)
-
(1999)
Linear Alg. Appl
, vol.299
, pp. 21-80
-
-
Demmel, J.1
Gu, M.2
Eisenstat, S.3
Slapničar, I.4
Veselić, K.5
Drmač, Z.6
-
3
-
-
0000075074
-
Accurate computation of the product-induced singular value decomposition with applications
-
Drmač, Z.: Accurate computation of the product-induced singular value decomposition with applications. SIAM J. Numer. Anal. 35, 1969–1994 (1998)
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, pp. 1969-1994
-
-
Drmač, Z.1
-
5
-
-
0141829814
-
Construction and arithmetics of (Formula presented.)-matrices
-
Grasedyck, L., Hackbusch, W.: Construction and arithmetics of (Formula presented.)-matrices. Computing 70, 295–334 (2003)
-
(2003)
Computing
, vol.70
, pp. 295-334
-
-
Grasedyck, L.1
Hackbusch, W.2
-
6
-
-
84954377913
-
-
Hackbusch, W.: Hierarchische Matrizen—Algorithmen und Analysis, Springer, Berlin, 2009—Hierarchical Matrices—Algorithms and Analysis. Springer, Berlin (2015, to appear)
-
Hackbusch, W.: Hierarchische Matrizen—Algorithmen und Analysis, Springer, Berlin, 2009—Hierarchical Matrices—Algorithms and Analysis. Springer, Berlin (2015, to appear)
-
-
-
-
8
-
-
10644283019
-
Hierarchical matrices based on a weak admissibility criterion
-
Hackbusch, W., Khoromskij, B., Kriemann, R.: Hierarchical matrices based on a weak admissibility criterion. Computing 73, 207–243 (2004)
-
(2004)
Computing
, vol.73
, pp. 207-243
-
-
Hackbusch, W.1
Khoromskij, B.2
Kriemann, R.3
-
9
-
-
84954392365
-
-
Kandler, U., Schröder, C.: Spectral error bounds for Hermitian inexact Krylov methods. Preprint 11–2014, Institute of Mathematics, Technische Universität Berlin (2014)
-
Kandler, U., Schröder, C.: Spectral error bounds for Hermitian inexact Krylov methods. Preprint 11–2014, Institute of Mathematics, Technische Universität Berlin (2014)
-
-
-
-
10
-
-
84884964414
-
Stable and efficient divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD
-
Nakatsukasa, Y., Higham, N.J.: Stable and efficient divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput. 35, A1325–A1349 (2013)
-
(2013)
SIAM J. Sci. Comput.
, vol.35
, pp. 1325-1349
-
-
Nakatsukasa, Y.1
Higham, N.J.2
-
11
-
-
34250957105
-
Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener
-
Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433–476 (1907)
-
(1907)
Math. Ann.
, vol.63
, pp. 433-476
-
-
Schmidt, E.1
|