-
1
-
-
0037361675
-
Marginal likelihood and Bayes factors for Dirichlet process mixture models
-
S. Basu and S. Chib. Marginal likelihood and Bayes factors for Dirichlet process mixture models. Jour- nal of the American Statistical Association, 98(461): 224-35, 2003.
-
(2003)
Jour- nal of the American Statistical Association
, vol.98
, Issue.461
, pp. 224-235
-
-
Basu, S.1
Chib, S.2
-
2
-
-
0042107603
-
Objective Bayesian methods for model selection: Introduction and comparison
-
of Institute of Mathematical Statistics Lecture Notes - Monograph Series, Beachwood
-
J. O. Berger and L. Pericchi. Objective Bayesian methods for model selection: Introduction and comparison. In Model Selection, volume 38 of Institute of Mathematical Statistics Lecture Notes - Monograph Series, pages 135-207. Beachwood, 2001.
-
(2001)
Model Selection
, vol.38
, pp. 135-207
-
-
Berger, J.O.1
Pericchi, L.2
-
3
-
-
84861170800
-
Probabilistic topic models
-
D. Blei. Probabilistic topic models. Communications of the ACM, 55(4): 77-84, 2012.
-
(2012)
Communications of the ACM
, vol.55
, Issue.4
, pp. 77-84
-
-
Blei, D.1
-
5
-
-
78650683992
-
Particle learning and smoothing
-
C. M. Carvalho, M. S. Johannes, H. F. Lopes, and N. G. Polson. Particle learning and smoothing. Sta- tistical Science, 25(1): 88-106, 2010a.
-
(2010)
Sta- tistical Science
, vol.25
, Issue.1
, pp. 88-106
-
-
Carvalho, C.M.1
Johannes, M.S.2
Lopes, H.F.3
Polson, N.G.4
-
6
-
-
79954555288
-
Particle learning for general mixtures
-
C. M. Carvalho, H. F. Lopes, N. G. Polson, and M. A. Taddy. Particle learning for general mixtures. Bayesian Analysis, 5(4): 709-40, 2010b.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.4
, pp. 709-740
-
-
Carvalho, C.M.1
Lopes, H.F.2
Polson, N.G.3
Taddy, M.A.4
-
7
-
-
0041974049
-
Marginal likelihood from the Gibbs output
-
S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90 (432): 1313-21, 1995.
-
(1995)
Journal of the American Statistical Association
, vol.90
, Issue.432
, pp. 1313-1321
-
-
Chib, S.1
-
9
-
-
0000600219
-
A solution to plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge
-
T. K. Landauer and S. T. Dumais. A solution to plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2): 211-240, 1997.
-
(1997)
Psychological Review
, vol.104
, Issue.2
, pp. 211-240
-
-
Landauer, T.K.1
Dumais, S.T.2
-
10
-
-
80051745679
-
Particle learning for sequential Bayesian computation (with discussion
-
Oxford University Press
-
H. Lopes, C. M. Carvalho, M. Johannes, and N. G. Polson. Particle learning for sequential Bayesian computation (with discussion). In Bayesian Statis- tics 9. Oxford University Press, 2011.
-
(2011)
Bayesian Statis- tics
, vol.9
-
-
Lopes, H.1
Carvalho, C.M.2
Johannes, M.3
Polson, N.G.4
-
12
-
-
85041412529
-
Semisupervised classification of texts using particle learning for probabilistic automata
-
Oxford University Press
-
A. Sales, C. Challis, P. R., and D. Merl. Semisupervised classification of texts using particle learning for probabilistic automata. In Bayesian Theory and Applications. Oxford University Press, 2012.
-
(2012)
Bayesian Theory and Applications
-
-
Sales, A.1
Challis, C.2
Merl, D.3
-
13
-
-
35148901361
-
Nested sampling for general Bayesian computation
-
J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1(4): 833-60, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.4
, pp. 833-860
-
-
Skilling, J.1
-
14
-
-
84890042115
-
On estimation and selection for topic models
-
M. Taddy. On estimation and selection for topic models. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Taddy, M.1
-
15
-
-
71149089356
-
Evaluation methods for topic models
-
ACM
-
H. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno. Evaluation methods for topic models. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1105-1112. ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 1105-1112
-
-
Wallach, H.1
Murray, I.2
Salakhutdinov, R.3
Mimno, D.4
|